Z=X+Y pdf, there is a part I can't understand.
$begingroup$
Two independent random variable X,Y which is U(0,1)
what is the pdf of Z=X+Y?
$F_Z(z)$ =
begin{cases}
0, & zle0 \
int_0^z int_0^{z-y} 1 ,dxdy=z^2/2, & 0lt zle1 \
1-int_bbox[yellow]{z-1}^1 int_{z-y}^1 1 ,dxdy=1-(2-z)^2/2,& 1lt zle2 \
1 & zge2
end{cases}
I understand I have to differential $F_z(z)$
The thing I can't understand is the highlight part.
Why does it starts with z-1?
statistics random-variables
$endgroup$
add a comment |
$begingroup$
Two independent random variable X,Y which is U(0,1)
what is the pdf of Z=X+Y?
$F_Z(z)$ =
begin{cases}
0, & zle0 \
int_0^z int_0^{z-y} 1 ,dxdy=z^2/2, & 0lt zle1 \
1-int_bbox[yellow]{z-1}^1 int_{z-y}^1 1 ,dxdy=1-(2-z)^2/2,& 1lt zle2 \
1 & zge2
end{cases}
I understand I have to differential $F_z(z)$
The thing I can't understand is the highlight part.
Why does it starts with z-1?
statistics random-variables
$endgroup$
1
$begingroup$
By union, did you mean uniform? The usual notation for this distribution is $U(0,,1)$.
$endgroup$
– J.G.
Jan 5 at 14:25
$begingroup$
@J.G. Thank you I edited it.
$endgroup$
– yonghankwon0
Jan 6 at 5:01
add a comment |
$begingroup$
Two independent random variable X,Y which is U(0,1)
what is the pdf of Z=X+Y?
$F_Z(z)$ =
begin{cases}
0, & zle0 \
int_0^z int_0^{z-y} 1 ,dxdy=z^2/2, & 0lt zle1 \
1-int_bbox[yellow]{z-1}^1 int_{z-y}^1 1 ,dxdy=1-(2-z)^2/2,& 1lt zle2 \
1 & zge2
end{cases}
I understand I have to differential $F_z(z)$
The thing I can't understand is the highlight part.
Why does it starts with z-1?
statistics random-variables
$endgroup$
Two independent random variable X,Y which is U(0,1)
what is the pdf of Z=X+Y?
$F_Z(z)$ =
begin{cases}
0, & zle0 \
int_0^z int_0^{z-y} 1 ,dxdy=z^2/2, & 0lt zle1 \
1-int_bbox[yellow]{z-1}^1 int_{z-y}^1 1 ,dxdy=1-(2-z)^2/2,& 1lt zle2 \
1 & zge2
end{cases}
I understand I have to differential $F_z(z)$
The thing I can't understand is the highlight part.
Why does it starts with z-1?
statistics random-variables
statistics random-variables
edited Jan 6 at 5:00
yonghankwon0
asked Jan 5 at 13:37
yonghankwon0yonghankwon0
155
155
1
$begingroup$
By union, did you mean uniform? The usual notation for this distribution is $U(0,,1)$.
$endgroup$
– J.G.
Jan 5 at 14:25
$begingroup$
@J.G. Thank you I edited it.
$endgroup$
– yonghankwon0
Jan 6 at 5:01
add a comment |
1
$begingroup$
By union, did you mean uniform? The usual notation for this distribution is $U(0,,1)$.
$endgroup$
– J.G.
Jan 5 at 14:25
$begingroup$
@J.G. Thank you I edited it.
$endgroup$
– yonghankwon0
Jan 6 at 5:01
1
1
$begingroup$
By union, did you mean uniform? The usual notation for this distribution is $U(0,,1)$.
$endgroup$
– J.G.
Jan 5 at 14:25
$begingroup$
By union, did you mean uniform? The usual notation for this distribution is $U(0,,1)$.
$endgroup$
– J.G.
Jan 5 at 14:25
$begingroup$
@J.G. Thank you I edited it.
$endgroup$
– yonghankwon0
Jan 6 at 5:01
$begingroup$
@J.G. Thank you I edited it.
$endgroup$
– yonghankwon0
Jan 6 at 5:01
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Convolution of probability densities
Let $X$ and $Y$ be any two independent (real-valued) random variables with densities $f_X$ and $f_Y$.
Define $Z equiv X + Y$.
Note that
$$
F_Z(z)
= mathbb{P}(Z leq z)
= mathbb{P}(X + Y leq z)
= int_{-infty}^{infty} f_X(x) mathbb{P}(x + Y leq z) dx
= int_{-infty}^{infty} f_X(x) F_Y(z - x) dx.
$$
Differentiating,
$$
f_Z(z)
= int_{-infty}^{infty} f_X(x) f_Y(z - x) dx.
$$
Convolution of i.i.d. uniform distributions
If $X$ and $Y$ are i.i.d. $U(0,1)$, then $f_x = f_Y = boldsymbol{1}_{(0,1)}$ where $boldsymbol{1}$ is the indicator function.
Plugging this into the integral of the previous section,
$$
f_Z(z)
= int_0^1 boldsymbol{1}_{(0,1)}(z - x) dx.
$$
Proceeding by cases,
$$
f_Z(z)
= begin{cases}
int_0^z dx = z & text{if } 0 leq z leq 1 \
int_bbox[yellow]{z-1}^1 dx = 2 - z & text{if } 1 leq z leq 2. \
end{cases}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062723%2fz-xy-pdf-there-is-a-part-i-cant-understand%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Convolution of probability densities
Let $X$ and $Y$ be any two independent (real-valued) random variables with densities $f_X$ and $f_Y$.
Define $Z equiv X + Y$.
Note that
$$
F_Z(z)
= mathbb{P}(Z leq z)
= mathbb{P}(X + Y leq z)
= int_{-infty}^{infty} f_X(x) mathbb{P}(x + Y leq z) dx
= int_{-infty}^{infty} f_X(x) F_Y(z - x) dx.
$$
Differentiating,
$$
f_Z(z)
= int_{-infty}^{infty} f_X(x) f_Y(z - x) dx.
$$
Convolution of i.i.d. uniform distributions
If $X$ and $Y$ are i.i.d. $U(0,1)$, then $f_x = f_Y = boldsymbol{1}_{(0,1)}$ where $boldsymbol{1}$ is the indicator function.
Plugging this into the integral of the previous section,
$$
f_Z(z)
= int_0^1 boldsymbol{1}_{(0,1)}(z - x) dx.
$$
Proceeding by cases,
$$
f_Z(z)
= begin{cases}
int_0^z dx = z & text{if } 0 leq z leq 1 \
int_bbox[yellow]{z-1}^1 dx = 2 - z & text{if } 1 leq z leq 2. \
end{cases}
$$
$endgroup$
add a comment |
$begingroup$
Convolution of probability densities
Let $X$ and $Y$ be any two independent (real-valued) random variables with densities $f_X$ and $f_Y$.
Define $Z equiv X + Y$.
Note that
$$
F_Z(z)
= mathbb{P}(Z leq z)
= mathbb{P}(X + Y leq z)
= int_{-infty}^{infty} f_X(x) mathbb{P}(x + Y leq z) dx
= int_{-infty}^{infty} f_X(x) F_Y(z - x) dx.
$$
Differentiating,
$$
f_Z(z)
= int_{-infty}^{infty} f_X(x) f_Y(z - x) dx.
$$
Convolution of i.i.d. uniform distributions
If $X$ and $Y$ are i.i.d. $U(0,1)$, then $f_x = f_Y = boldsymbol{1}_{(0,1)}$ where $boldsymbol{1}$ is the indicator function.
Plugging this into the integral of the previous section,
$$
f_Z(z)
= int_0^1 boldsymbol{1}_{(0,1)}(z - x) dx.
$$
Proceeding by cases,
$$
f_Z(z)
= begin{cases}
int_0^z dx = z & text{if } 0 leq z leq 1 \
int_bbox[yellow]{z-1}^1 dx = 2 - z & text{if } 1 leq z leq 2. \
end{cases}
$$
$endgroup$
add a comment |
$begingroup$
Convolution of probability densities
Let $X$ and $Y$ be any two independent (real-valued) random variables with densities $f_X$ and $f_Y$.
Define $Z equiv X + Y$.
Note that
$$
F_Z(z)
= mathbb{P}(Z leq z)
= mathbb{P}(X + Y leq z)
= int_{-infty}^{infty} f_X(x) mathbb{P}(x + Y leq z) dx
= int_{-infty}^{infty} f_X(x) F_Y(z - x) dx.
$$
Differentiating,
$$
f_Z(z)
= int_{-infty}^{infty} f_X(x) f_Y(z - x) dx.
$$
Convolution of i.i.d. uniform distributions
If $X$ and $Y$ are i.i.d. $U(0,1)$, then $f_x = f_Y = boldsymbol{1}_{(0,1)}$ where $boldsymbol{1}$ is the indicator function.
Plugging this into the integral of the previous section,
$$
f_Z(z)
= int_0^1 boldsymbol{1}_{(0,1)}(z - x) dx.
$$
Proceeding by cases,
$$
f_Z(z)
= begin{cases}
int_0^z dx = z & text{if } 0 leq z leq 1 \
int_bbox[yellow]{z-1}^1 dx = 2 - z & text{if } 1 leq z leq 2. \
end{cases}
$$
$endgroup$
Convolution of probability densities
Let $X$ and $Y$ be any two independent (real-valued) random variables with densities $f_X$ and $f_Y$.
Define $Z equiv X + Y$.
Note that
$$
F_Z(z)
= mathbb{P}(Z leq z)
= mathbb{P}(X + Y leq z)
= int_{-infty}^{infty} f_X(x) mathbb{P}(x + Y leq z) dx
= int_{-infty}^{infty} f_X(x) F_Y(z - x) dx.
$$
Differentiating,
$$
f_Z(z)
= int_{-infty}^{infty} f_X(x) f_Y(z - x) dx.
$$
Convolution of i.i.d. uniform distributions
If $X$ and $Y$ are i.i.d. $U(0,1)$, then $f_x = f_Y = boldsymbol{1}_{(0,1)}$ where $boldsymbol{1}$ is the indicator function.
Plugging this into the integral of the previous section,
$$
f_Z(z)
= int_0^1 boldsymbol{1}_{(0,1)}(z - x) dx.
$$
Proceeding by cases,
$$
f_Z(z)
= begin{cases}
int_0^z dx = z & text{if } 0 leq z leq 1 \
int_bbox[yellow]{z-1}^1 dx = 2 - z & text{if } 1 leq z leq 2. \
end{cases}
$$
answered Jan 6 at 5:25
parsiadparsiad
16.9k32353
16.9k32353
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062723%2fz-xy-pdf-there-is-a-part-i-cant-understand%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
By union, did you mean uniform? The usual notation for this distribution is $U(0,,1)$.
$endgroup$
– J.G.
Jan 5 at 14:25
$begingroup$
@J.G. Thank you I edited it.
$endgroup$
– yonghankwon0
Jan 6 at 5:01