Existence of a “scaling factor” in a inequality
We're given the real numbers $a,b,c$ that satisfy the condition $ale b le c$.
Consider the case where $ble frac{a+b+c}{3}$, then we have $frac{a+b+c}{3} le frac{a+c}{2} le c$ and similarly $frac{a+b+c}{3} le frac{b+c}{2} le c$, Then there exist $lambda ,mu in [0,1]$ such that: $$frac{c+a}{2}=lambda c+(1-lambda)left(frac{a+b+c}{3}right)$$
and $$frac{b+c}{2}=mu c+(1-mu)left(frac{a+b+c}{3}right)$$
I can "intuitively" see why this should be true, but why do such $lambda$ and $mu$ must exist?
elementary-number-theory inequality
add a comment |
We're given the real numbers $a,b,c$ that satisfy the condition $ale b le c$.
Consider the case where $ble frac{a+b+c}{3}$, then we have $frac{a+b+c}{3} le frac{a+c}{2} le c$ and similarly $frac{a+b+c}{3} le frac{b+c}{2} le c$, Then there exist $lambda ,mu in [0,1]$ such that: $$frac{c+a}{2}=lambda c+(1-lambda)left(frac{a+b+c}{3}right)$$
and $$frac{b+c}{2}=mu c+(1-mu)left(frac{a+b+c}{3}right)$$
I can "intuitively" see why this should be true, but why do such $lambda$ and $mu$ must exist?
elementary-number-theory inequality
add a comment |
We're given the real numbers $a,b,c$ that satisfy the condition $ale b le c$.
Consider the case where $ble frac{a+b+c}{3}$, then we have $frac{a+b+c}{3} le frac{a+c}{2} le c$ and similarly $frac{a+b+c}{3} le frac{b+c}{2} le c$, Then there exist $lambda ,mu in [0,1]$ such that: $$frac{c+a}{2}=lambda c+(1-lambda)left(frac{a+b+c}{3}right)$$
and $$frac{b+c}{2}=mu c+(1-mu)left(frac{a+b+c}{3}right)$$
I can "intuitively" see why this should be true, but why do such $lambda$ and $mu$ must exist?
elementary-number-theory inequality
We're given the real numbers $a,b,c$ that satisfy the condition $ale b le c$.
Consider the case where $ble frac{a+b+c}{3}$, then we have $frac{a+b+c}{3} le frac{a+c}{2} le c$ and similarly $frac{a+b+c}{3} le frac{b+c}{2} le c$, Then there exist $lambda ,mu in [0,1]$ such that: $$frac{c+a}{2}=lambda c+(1-lambda)left(frac{a+b+c}{3}right)$$
and $$frac{b+c}{2}=mu c+(1-mu)left(frac{a+b+c}{3}right)$$
I can "intuitively" see why this should be true, but why do such $lambda$ and $mu$ must exist?
elementary-number-theory inequality
elementary-number-theory inequality
asked yesterday
Spasoje Durovic
34110
34110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
With $x = frac{a+b+c}{3}, y= frac{a+c}{2}, z= c$ your question becomes:
If $x le y le z$ then there is a $lambda in [0, 1]$ such that
$$ tag{*}
y = lambda x + (1 - lambda) z , .
$$
If $x = z$ then any $lambda in [0, 1]$ will do, otherwise $(*)$ is equivalent
to
$$
lambda = frac{z-y}{z-x} , ,
$$
which satisfies $0 le lambda le 1$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060544%2fexistence-of-a-scaling-factor-in-a-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
With $x = frac{a+b+c}{3}, y= frac{a+c}{2}, z= c$ your question becomes:
If $x le y le z$ then there is a $lambda in [0, 1]$ such that
$$ tag{*}
y = lambda x + (1 - lambda) z , .
$$
If $x = z$ then any $lambda in [0, 1]$ will do, otherwise $(*)$ is equivalent
to
$$
lambda = frac{z-y}{z-x} , ,
$$
which satisfies $0 le lambda le 1$.
add a comment |
With $x = frac{a+b+c}{3}, y= frac{a+c}{2}, z= c$ your question becomes:
If $x le y le z$ then there is a $lambda in [0, 1]$ such that
$$ tag{*}
y = lambda x + (1 - lambda) z , .
$$
If $x = z$ then any $lambda in [0, 1]$ will do, otherwise $(*)$ is equivalent
to
$$
lambda = frac{z-y}{z-x} , ,
$$
which satisfies $0 le lambda le 1$.
add a comment |
With $x = frac{a+b+c}{3}, y= frac{a+c}{2}, z= c$ your question becomes:
If $x le y le z$ then there is a $lambda in [0, 1]$ such that
$$ tag{*}
y = lambda x + (1 - lambda) z , .
$$
If $x = z$ then any $lambda in [0, 1]$ will do, otherwise $(*)$ is equivalent
to
$$
lambda = frac{z-y}{z-x} , ,
$$
which satisfies $0 le lambda le 1$.
With $x = frac{a+b+c}{3}, y= frac{a+c}{2}, z= c$ your question becomes:
If $x le y le z$ then there is a $lambda in [0, 1]$ such that
$$ tag{*}
y = lambda x + (1 - lambda) z , .
$$
If $x = z$ then any $lambda in [0, 1]$ will do, otherwise $(*)$ is equivalent
to
$$
lambda = frac{z-y}{z-x} , ,
$$
which satisfies $0 le lambda le 1$.
answered yesterday
Martin R
27.2k33254
27.2k33254
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060544%2fexistence-of-a-scaling-factor-in-a-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown