Calculating the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$
I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$
I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$
real-analysis integration complex-analysis analysis
add a comment |
I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$
I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$
real-analysis integration complex-analysis analysis
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
– Mark
Jan 4 at 16:22
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
– Ricardo770
Jan 4 at 16:50
The result should be $$frac{pi}{2e}$$
– Dr. Sonnhard Graubner
Jan 4 at 17:12
add a comment |
I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$
I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$
real-analysis integration complex-analysis analysis
I need help calculation the integral $int_{-infty}^{infty} xsin(x)/(x^2+1)^2 dx$
I am getting confused on how to integrate around $pm i$. I think I'll have to use $gamma = Re^{itheta}$ where $|R|leq n$ for $ngeq1$
real-analysis integration complex-analysis analysis
real-analysis integration complex-analysis analysis
edited Jan 4 at 17:49
Bernard
118k639112
118k639112
asked Jan 4 at 16:18
user628226user628226
525
525
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
– Mark
Jan 4 at 16:22
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
– Ricardo770
Jan 4 at 16:50
The result should be $$frac{pi}{2e}$$
– Dr. Sonnhard Graubner
Jan 4 at 17:12
add a comment |
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
– Mark
Jan 4 at 16:22
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
– Ricardo770
Jan 4 at 16:50
The result should be $$frac{pi}{2e}$$
– Dr. Sonnhard Graubner
Jan 4 at 17:12
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
– Mark
Jan 4 at 16:22
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
– Mark
Jan 4 at 16:22
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
– Ricardo770
Jan 4 at 16:50
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
– Ricardo770
Jan 4 at 16:50
The result should be $$frac{pi}{2e}$$
– Dr. Sonnhard Graubner
Jan 4 at 17:12
The result should be $$frac{pi}{2e}$$
– Dr. Sonnhard Graubner
Jan 4 at 17:12
add a comment |
2 Answers
2
active
oldest
votes
$$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$
Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.
$$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$
Now we want to show that this second integral is zero in the limit as $Rtoinfty$.
$$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$
$int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.
So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$
We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.
$$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.
Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$
Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$
add a comment |
Let us define
$$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
$$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
by partial fraction decomposition, and
$$ g(a) = frac{pi a}{4}e^{-a} $$
by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061796%2fcalculating-the-integral-int-infty-infty-x-sinx-x212-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$
Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.
$$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$
Now we want to show that this second integral is zero in the limit as $Rtoinfty$.
$$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$
$int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.
So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$
We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.
$$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.
Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$
Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$
add a comment |
$$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$
Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.
$$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$
Now we want to show that this second integral is zero in the limit as $Rtoinfty$.
$$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$
$int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.
So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$
We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.
$$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.
Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$
Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$
add a comment |
$$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$
Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.
$$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$
Now we want to show that this second integral is zero in the limit as $Rtoinfty$.
$$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$
$int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.
So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$
We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.
$$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.
Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$
Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$
$$int_{-infty}^inftyfrac{xsin x}{(x^2+1)^2}mathrm dx=mathfrak Ileft{int_{-infty}^inftyfrac{xe^{ix}}{(x^2+1)^2}mathrm dxright}$$
Let us compute this integral. It is given by a contour in the complex plane that runs along the real axis. Since the exponential on top decays as $|x|toinfty$ in the upper half plane, this is where we choose to close the contour. Therefore we have a semicircular contour in the upper half plane, of the form $Re^{itheta}$ for $R>1$ and $thetain[0,pi]$. Let us denote this contour by $gamma_R$.
$$lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dx=int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx+lim_{Rtoinfty}int_0^pifrac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetatag1$$
Now we want to show that this second integral is zero in the limit as $Rtoinfty$.
$$begin{align}left|int_0^pi frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}mathrm dthetaright|&leint_0^pileft|frac{Re^{itheta}e^{iRe^{itheta}}}{(R^2e^{2itheta}+1)^2}iRe^{itheta}right|mathrm dtheta\&leint_0^pileft|frac{R^2e^{-Rsin theta}}{(R^2-1)^2}right|mathrm dthetaend{align}$$
$int_0^pi e^{-Rsintheta}mathrm dtheta$ is finite, and in the limit as $Rtoinfty$, the prefactor tends to zero, so the second integral in $(1)$ is zero.
So we have $$int_{-infty}^{infty}frac{xe^{ix}}{(x^2+1)^2}mathrm dx=lim_{Rtoinfty}int_{gamma_R} frac{xe^{ix}}{(x^2+1)^2}mathrm dxtag2$$
We evaluate the RHS of $(2)$ by residue calculus. The contour encloses a pole at $x=i$, of order $2$. We evaluate the residue at the pole.
$$text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}(x-i)^2}{(x^2+1)^2}right)=lim_{xto i}frac{d}{dx}left(frac{xe^{ix}}{(x+i)^2}right)=frac1{4e}$$after some calculations.
Therefore the RHS of $(2)$ is $$2pi icdot text{Res}left(frac{xe^{ix}}{(x^2+1)^2},iright)=frac{pi i }{2e}$$
Since the integral we wish to calculate is the imaginary part of the LHS of $(2)$, the final answer is $$frac{pi}{2e}.$$
answered Jan 4 at 17:22
John DoeJohn Doe
10.9k11238
10.9k11238
add a comment |
add a comment |
Let us define
$$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
$$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
by partial fraction decomposition, and
$$ g(a) = frac{pi a}{4}e^{-a} $$
by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.
add a comment |
Let us define
$$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
$$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
by partial fraction decomposition, and
$$ g(a) = frac{pi a}{4}e^{-a} $$
by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.
add a comment |
Let us define
$$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
$$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
by partial fraction decomposition, and
$$ g(a) = frac{pi a}{4}e^{-a} $$
by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.
Let us define
$$ g(a) = int_{0}^{+infty}frac{xsin(ax)}{(x^2+1)^2},dx $$
for $ainmathbb{R}^+$. Our integral is clearly $2,g(1)$ by parity. We have
$$ mathcal L g(s) = int_{0}^{+infty}frac{x^2}{(s^2+x^2)(1+x^2)^2},dx = frac{pi}{4(1+s)^2} $$
by partial fraction decomposition, and
$$ g(a) = frac{pi a}{4}e^{-a} $$
by the inverse Laplace transform. It follows that the original integral equals $color{blue}{frac{pi}{2e}}$.
answered Jan 4 at 18:06
Jack D'AurizioJack D'Aurizio
287k33280658
287k33280658
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061796%2fcalculating-the-integral-int-infty-infty-x-sinx-x212-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Yes, half a circle is a good idea. Prove that when $Rtoinfty$ the integral goes to zero. You don't need anything around $-i$, that will only be more work.
– Mark
Jan 4 at 16:22
You could try solving $int_{-infty}^{infty} frac{xsin(alpha{x})}{(x^{2}+1)^{2}}dx=-frac{d}{dalpha}int_{-infty}^{infty} frac{cos(alpha{x})}{(x^{2}+1)^{2}}dx$ and then let $alpharightarrow1$. It might be easier.
– Ricardo770
Jan 4 at 16:50
The result should be $$frac{pi}{2e}$$
– Dr. Sonnhard Graubner
Jan 4 at 17:12