Prove that $forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$
Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$
My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!
My attempt:
By definition, we have:
$xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$
$ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$
$(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$
$xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$
It suffices to prove that $A=B$.
Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.
Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.
$ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.
Similarly, $ain Bimplies ain A$.
Hence $A=B$ and thus $inf A=inf B$.
proof-verification real-numbers
add a comment |
Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$
My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!
My attempt:
By definition, we have:
$xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$
$ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$
$(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$
$xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$
It suffices to prove that $A=B$.
Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.
Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.
$ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.
Similarly, $ain Bimplies ain A$.
Hence $A=B$ and thus $inf A=inf B$.
proof-verification real-numbers
1
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
– Did
2 days ago
add a comment |
Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$
My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!
My attempt:
By definition, we have:
$xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$
$ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$
$(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$
$xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$
It suffices to prove that $A=B$.
Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.
Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.
$ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.
Similarly, $ain Bimplies ain A$.
Hence $A=B$ and thus $inf A=inf B$.
proof-verification real-numbers
Let $Bbb R^+={xinBbb R mid x>0}$ and $x,yinBbb R^+$. We define the multiplication operation $(cdot)$ on $Bbb R^+$ by $$xcdot y:=inf{rcdot smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$ Prove that $$forall x,y,z in Bbb R^+:(xcdot y)cdot z = xcdot (ycdot z)$$
My textbook said that the proof is straightforward, but it took me a lot of time to come up with a rigorous one. Please help me verify it. Thank you so much!
My attempt:
By definition, we have:
$xcdot y = inf{rcdot smid r,sinBbb Q, x<r, y<s}$
$ycdot z = inf{scdot tmid s,tinBbb Q, y<s, z<t}$
$(xcdot y)cdot z = inf{pcdot tmid p,tinBbb Q, xcdot y<p, z<t}=inf A$
$xcdot (ycdot z) = inf{rcdot qmid r,qinBbb Q, x<r, ycdot z<q}=inf B$
It suffices to prove that $A=B$.
Notice that $pin Bbb Q$ and $p>xcdot y iff$ $pin Bbb Q$ and $p>rcdot s$ for some $r,sinBbb Q$ such that $r>x,s>y$. Let $p=rcdot bar s>rcdot s$. Then $bar s in Bbb Q$ and $bar s>s>y$. Thus $p=rcdot bar s$ where $r,bar s in Bbb Q$ such that $r>x,bar s>y$.
Similarly, $qin Bbb Q$ and $q>ycdot z implies q=scdotbar t$ where $s,bar t in Bbb Q$ such that $s>y,bar t>z$.
$ain A implies a=pcdot t$ for some $p,tinBbb Q,p>xcdot y,t>z$ $implies a=(rcdot bar s)cdot t$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot (bar scdot t)$ for some $r,bar s,t in Bbb Q$ such that $r>x,bar s>y,t>z$ $implies a=rcdot q$ for some $r,q=bar scdot tin Bbb Q$ such that $r>x,q>ycdot z$ $implies ain B$.
Similarly, $ain Bimplies ain A$.
Hence $A=B$ and thus $inf A=inf B$.
proof-verification real-numbers
proof-verification real-numbers
asked 2 days ago
Le Anh Dung
1,0231521
1,0231521
1
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
– Did
2 days ago
add a comment |
1
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
– Did
2 days ago
1
1
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
– Did
2 days ago
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
– Did
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$
I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.
My attempt:
First, we have some useful observations:
$min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.
$pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.
By definition, we have:
$xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
$xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
Hence $xcdot (y+z) = xcdot y +xcdot z$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060808%2fprove-that-forall-x-y-z-in-bbb-rx-cdot-y-cdot-z-x-cdot-y-cdot-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$
I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.
My attempt:
First, we have some useful observations:
$min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.
$pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.
By definition, we have:
$xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
$xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
Hence $xcdot (y+z) = xcdot y +xcdot z$
add a comment |
We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$
I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.
My attempt:
First, we have some useful observations:
$min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.
$pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.
By definition, we have:
$xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
$xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
Hence $xcdot (y+z) = xcdot y +xcdot z$
add a comment |
We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$
I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.
My attempt:
First, we have some useful observations:
$min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.
$pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.
By definition, we have:
$xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
$xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
Hence $xcdot (y+z) = xcdot y +xcdot z$
We define the addition operation $(+)$ on $Bbb R$ by $$x+ y:=inf{r+ smid r,sinBbb Q text{ and } x<r text{ and } y<s}$$
I would like to present a proof that $forall x,y,z in Bbb R^+:xcdot (y+z) = xcdot y +xcdot z$.
My attempt:
First, we have some useful observations:
$min Bbb Q$ and $m > xcdot y$ $iff m=r cdot s$ for some $r,sin Bbb Q$ such that $r>x,s>y$.
$pinBbb Q$ and $p>y+z$ $iff p=s+t$ for some $s,tin Bbb Q$ such that $s>y,t>z$.
By definition, we have:
$xcdot (y+z) = inf {rcdot p mid r,pinBbb Q,x<r,y+z<p}=inf {rcdot(s+t) mid r,s,tinBbb Q, x<r,y<s,z<t}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
$xcdot y+xcdot z = inf {m+n mid m,ninBbb Q,xcdot y<m,xcdot z<n}=inf {rcdot s+rcdot t mid r,s,tinBbb Q, x<r,y<s,z<t}.$
Hence $xcdot (y+z) = xcdot y +xcdot z$
edited 2 days ago
answered 2 days ago
Le Anh Dung
1,0231521
1,0231521
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060808%2fprove-that-forall-x-y-z-in-bbb-rx-cdot-y-cdot-z-x-cdot-y-cdot-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
The proof is indeed straightforward since $(xcdot y)cdot z$ and $xcdot (ycdot z)$ are both equal to $$inf{rcdot scdot tmid r,s,tinBbb Q text{ and } x<r text{ and } y<s text{ and } z<t}$$
– Did
2 days ago