Hitting time and its distribution












0














÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$



$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$



Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?










share|cite|improve this question




















  • 1




    Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
    – Did
    Sep 6 '14 at 11:45










  • yeah, I didin't derivate respect to t. Now It's clear.
    – Cronos
    Sep 6 '14 at 18:15
















0














÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$



$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$



Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?










share|cite|improve this question




















  • 1




    Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
    – Did
    Sep 6 '14 at 11:45










  • yeah, I didin't derivate respect to t. Now It's clear.
    – Cronos
    Sep 6 '14 at 18:15














0












0








0







÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$



$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$



Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?










share|cite|improve this question















÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$



$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$



Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?







inverse brownian-motion stopping-times






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 6 '14 at 10:59









Davide Giraudo

125k16150260




125k16150260










asked Sep 6 '14 at 10:16









Cronos

233




233








  • 1




    Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
    – Did
    Sep 6 '14 at 11:45










  • yeah, I didin't derivate respect to t. Now It's clear.
    – Cronos
    Sep 6 '14 at 18:15














  • 1




    Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
    – Did
    Sep 6 '14 at 11:45










  • yeah, I didin't derivate respect to t. Now It's clear.
    – Cronos
    Sep 6 '14 at 18:15








1




1




Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
– Did
Sep 6 '14 at 11:45




Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
– Did
Sep 6 '14 at 11:45












yeah, I didin't derivate respect to t. Now It's clear.
– Cronos
Sep 6 '14 at 18:15




yeah, I didin't derivate respect to t. Now It's clear.
– Cronos
Sep 6 '14 at 18:15










1 Answer
1






active

oldest

votes


















0














$P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
+ P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
= 0 + frac{1}{2} P(T_beta leq t ) \
Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $
.



$ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).



So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
= 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
= 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $



where $Phi$ is the CDF of standard Gaussian distribution.
So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f921255%2fhitting-time-and-its-distribution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    $P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
    + P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
    = 0 + frac{1}{2} P(T_beta leq t ) \
    Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $
    .



    $ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).



    So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
    = 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
    = 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $



    where $Phi$ is the CDF of standard Gaussian distribution.
    So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.






    share|cite|improve this answer


























      0














      $P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
      + P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
      = 0 + frac{1}{2} P(T_beta leq t ) \
      Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $
      .



      $ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).



      So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
      = 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
      = 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $



      where $Phi$ is the CDF of standard Gaussian distribution.
      So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.






      share|cite|improve this answer
























        0












        0








        0






        $P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
        + P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
        = 0 + frac{1}{2} P(T_beta leq t ) \
        Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $
        .



        $ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).



        So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
        = 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
        = 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $



        where $Phi$ is the CDF of standard Gaussian distribution.
        So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.






        share|cite|improve this answer












        $P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
        + P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
        = 0 + frac{1}{2} P(T_beta leq t ) \
        Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $
        .



        $ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).



        So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
        = 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
        = 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $



        where $Phi$ is the CDF of standard Gaussian distribution.
        So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 17:42









        Albert Chen

        20017




        20017






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f921255%2fhitting-time-and-its-distribution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8