Posts

Showing posts from March 19, 2019

How to change URL of PWA in Magento 2.3?

Image
2 1 I have installed the PWA studio successfully with the Venia storefront. But my development environment URL is generating something like below. https://magento-venia-concept-3328z.local.pwadev:8048/ How I can change the URL to something else. magento2.3 pwa pwa-studio venia share | improve this question edited 9 hours ago Asheem Patro asked yesterday Asheem Patro Asheem Patro 676 4 23 ...

Charles Joseph Gahan

Image
.mw-parser-output .infobox{border:1px solid #aaa;background-color:#f9f9f9;color:black;margin:.5em 0 .5em 1em;padding:.2em;float:right;clear:right;width:22em;text-align:left;font-size:88%;line-height:1.6em}.mw-parser-output .infobox td,.mw-parser-output .infobox th{vertical-align:top;padding:0 .2em}.mw-parser-output .infobox caption{font-size:larger}.mw-parser-output .infobox.bordered{border-collapse:collapse}.mw-parser-output .infobox.bordered td,.mw-parser-output .infobox.bordered th{border:1px solid #aaa}.mw-parser-output .infobox.bordered .borderless td,.mw-parser-output .infobox.bordered .borderless th{border:0}.mw-parser-output .infobox-showbutton .mw-collapsible-text{color:inherit}.mw-parser-output .infobox.bordered .mergedtoprow td,.mw-parser-output .infobox.bordered .mergedtoprow th{border:0;border-top:1px solid #aaa;border-right:1px solid #aaa}.mw-parser-output .infobox.bordered .mergedrow td,.mw-parser-output .infobox.bordered .mergedrow th{border:0;border-right:1px solid ...

How to solve equations of the form $fT=delta_0$?

Image
0 I want to solve distributional equations of the form $fT=delta_0$ for a $C^infty$ function $f$ . For the equation $fT=0$ , we can bound the support of $T$ by $$text{supp }Tsubset f^{-1}({0})$$ and that usually helps solving such equations. However, for $fT=delta_0$ I don't seem to understand a pattern. For example, let's understand the solution of $xT=delta_0$ : We want to find a distribution $T$ such that $T(xvarphi)=varphi(0)$ for every $varphiinmathcal{D}(mathbb{R})$ . Since we can't evaluate $varphi(x)/x$ at $0$ , the next logical thing to do is to define $T$ as $$T(varphi)=lim_{xto 0}frac{varphi(x)}{x}.$$ Since $varphi$ is $C^infty$ , this works if and only if $varphi(0)=0$ . We can fix this by defining $$T(varphi)=lim_{xto 0}frac{varphi(x)-varphi(0)}{x}=varphi'(0).$$ That is, ...