Posts

Showing posts from April 6, 2019

Rundbladloppor

Image
.mw-parser-output table.ambox{margin:0 10%;border-collapse:collapse;background:#fbfbfb;border:1px solid #aaa;border-left:10px solid #608ec2}.mw-parser-output table.ambox th.ambox-text,.mw-parser-output table.ambox td.ambox-text{padding:.25em .5em;width:100%}.mw-parser-output table.ambox td.ambox-image{padding:2px 0 2px .5em;text-align:center;vertical-align:middle}.mw-parser-output table.ambox td.ambox-imageright{padding:2px 4px 2px 0;text-align:center;vertical-align:middle}.mw-parser-output table.ambox-notice{border-left:10px solid #608ec2}.mw-parser-output table.ambox-delete,.mw-parser-output table.ambox-serious{border-left:10px solid #b22222}.mw-parser-output table.ambox-content{border-left:10px solid #f28500}.mw-parser-output table.ambox-style{border-left:10px solid #f4c430}.mw-parser-output table.ambox-merge{border-left:10px solid #9932cc}.mw-parser-output table.ambox-protection{border-left:10px solid #bba}.mw-parser-output .ambox+.ambox,.mw-parser-output .topbox+.ambox,.mw-pars

How to prove that if $aequiv b pmod{kn}$ then $a^kequiv b^k pmod{k^2n}$

Image
2 0 What I have done is this: $aequiv b pmod{2n}$, $a=b+ctimes2n$, for some $c$, $a^2=b^2+2btimes ctimes2n+c^2times2^2n^2$, $a^2-b^2=(btimes c+c^2n)times4n$, then $a^2equiv b^2pmod{2^2n}$. I think that this is right: what I DON’T understand is how to generalize this to: $aequiv bpmod{kn}Rightarrow a^kequiv b^k pmod{k^2n}$. Please give me a hint. number-theory share | cite | improve this question edited Jan 4 at 15:33 Bill Dubuque 209k 29 190 631 asked Dec 1 '11 at 10:52