Boundedness of the L2 norm of the boundary derivative of the Greens function.
I wish to prove that an integral is bounded. For $delta in (0,1)$ and $textbf{c} in (delta - 1, 1-delta)^2$ we define our domain to be $Omega := (-1,1)^2 setminus B_delta (textbf{c})$. Let $textbf{n}in mathbb{S}^1$ be the outward pointing normal to $partial Omega$.
Let $G$ be the Greens function for the Laplace operator, which means that
$int_{Omega} Delta G(textbf{x},textbf{y})f(textbf{y}) dtextbf{y} = f(textbf{x})$.
I wish to prove that the following integral is bounded,
$intlimits_{Omega} ointlimits_{partial Omega}(nabla_{textbf{y}}G(textbf{x},textbf{y})cdot textbf{n})^2 dS_{textbf{y}} dtextbf{x}$.
calculus multivariable-calculus greens-function
New contributor
add a comment |
I wish to prove that an integral is bounded. For $delta in (0,1)$ and $textbf{c} in (delta - 1, 1-delta)^2$ we define our domain to be $Omega := (-1,1)^2 setminus B_delta (textbf{c})$. Let $textbf{n}in mathbb{S}^1$ be the outward pointing normal to $partial Omega$.
Let $G$ be the Greens function for the Laplace operator, which means that
$int_{Omega} Delta G(textbf{x},textbf{y})f(textbf{y}) dtextbf{y} = f(textbf{x})$.
I wish to prove that the following integral is bounded,
$intlimits_{Omega} ointlimits_{partial Omega}(nabla_{textbf{y}}G(textbf{x},textbf{y})cdot textbf{n})^2 dS_{textbf{y}} dtextbf{x}$.
calculus multivariable-calculus greens-function
New contributor
add a comment |
I wish to prove that an integral is bounded. For $delta in (0,1)$ and $textbf{c} in (delta - 1, 1-delta)^2$ we define our domain to be $Omega := (-1,1)^2 setminus B_delta (textbf{c})$. Let $textbf{n}in mathbb{S}^1$ be the outward pointing normal to $partial Omega$.
Let $G$ be the Greens function for the Laplace operator, which means that
$int_{Omega} Delta G(textbf{x},textbf{y})f(textbf{y}) dtextbf{y} = f(textbf{x})$.
I wish to prove that the following integral is bounded,
$intlimits_{Omega} ointlimits_{partial Omega}(nabla_{textbf{y}}G(textbf{x},textbf{y})cdot textbf{n})^2 dS_{textbf{y}} dtextbf{x}$.
calculus multivariable-calculus greens-function
New contributor
I wish to prove that an integral is bounded. For $delta in (0,1)$ and $textbf{c} in (delta - 1, 1-delta)^2$ we define our domain to be $Omega := (-1,1)^2 setminus B_delta (textbf{c})$. Let $textbf{n}in mathbb{S}^1$ be the outward pointing normal to $partial Omega$.
Let $G$ be the Greens function for the Laplace operator, which means that
$int_{Omega} Delta G(textbf{x},textbf{y})f(textbf{y}) dtextbf{y} = f(textbf{x})$.
I wish to prove that the following integral is bounded,
$intlimits_{Omega} ointlimits_{partial Omega}(nabla_{textbf{y}}G(textbf{x},textbf{y})cdot textbf{n})^2 dS_{textbf{y}} dtextbf{x}$.
calculus multivariable-calculus greens-function
calculus multivariable-calculus greens-function
New contributor
New contributor
New contributor
asked Jan 4 at 22:46
A.R.PA.R.P
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
A.R.P is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062205%2fboundedness-of-the-l2-norm-of-the-boundary-derivative-of-the-greens-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
A.R.P is a new contributor. Be nice, and check out our Code of Conduct.
A.R.P is a new contributor. Be nice, and check out our Code of Conduct.
A.R.P is a new contributor. Be nice, and check out our Code of Conduct.
A.R.P is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062205%2fboundedness-of-the-l2-norm-of-the-boundary-derivative-of-the-greens-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown