An equal expression to $sum^{z}_{n=0}nfrac{x^{z-n}}{(z-n)!}$
Is there a way to rewrite an equal expression to the following
$$sum^{z}_{n=0}nfrac{x^{z-n}}{(z-n)!}$$
but without the sum?
$z$ is integer and $xgeq 0$.
real-analysis calculus sequences-and-series summation
add a comment |
Is there a way to rewrite an equal expression to the following
$$sum^{z}_{n=0}nfrac{x^{z-n}}{(z-n)!}$$
but without the sum?
$z$ is integer and $xgeq 0$.
real-analysis calculus sequences-and-series summation
add a comment |
Is there a way to rewrite an equal expression to the following
$$sum^{z}_{n=0}nfrac{x^{z-n}}{(z-n)!}$$
but without the sum?
$z$ is integer and $xgeq 0$.
real-analysis calculus sequences-and-series summation
Is there a way to rewrite an equal expression to the following
$$sum^{z}_{n=0}nfrac{x^{z-n}}{(z-n)!}$$
but without the sum?
$z$ is integer and $xgeq 0$.
real-analysis calculus sequences-and-series summation
real-analysis calculus sequences-and-series summation
asked Jan 3 at 22:31
Y.L
577
577
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
The answer is no. By making the change of avriable $k=z-n$ and splitting the sum into two parts you get $(z-x)sum_{k=1}^{z-1} frac {x^{k}} {k!} +frac {zx^{z}} {z!}$ from which you cannot get rid of the sum.
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
add a comment |
Sticking to a more standard notation ($z$ normally denotes complex, not integral, number)
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= sum_{k=0}^{n} (n-k) frac{x^k}{k!}
= nsum_{k=0}^n frac{x^k}{k!} - sum_{k=0}^n xfrac{d}{dx} frac{x^k}{k!}\
&= nP_n(x) - xfrac{d}{dx}P_n(x)
end{align}
where $P_n(x) = sum_{k=0}^n frac{x^k}{k!}$ is the partial sum of the exponential's Taylor series. But as can be seen here, the incomplete gamma function $Gamma(n,x) = int_x^{infty} x^{n-1}e^{-x};dx$ may be expressed as
$$Gamma(n,x) = (n-1)! e^{-x} sum_{k=0}^{n-1}frac{x^k}{k!}$$
hence,
$$P_n(x) = frac{Gamma(n+1,x)}{n!} e^x$$
We may then compute
begin{align}
frac{d}{dx}P_n(x)
&= P_n(x) frac{d}{dx} ln P_n(x) = P_n(x) left[,frac{frac{partial}{partial{x}}Gamma(n+1,x)}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x left[,frac{-x^ne^{-x}}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x - frac{x^n}{n!}
end{align}
Solving and simplifying, we get
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= nP_n(x) - xfrac{d}{dx}P_n(x)\
&= frac{1}{n!} left[,(n-x)Gamma(n+1,x)e^x + x^{n+1},right]
end{align}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061092%2fan-equal-expression-to-sumz-n-0n-fracxz-nz-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The answer is no. By making the change of avriable $k=z-n$ and splitting the sum into two parts you get $(z-x)sum_{k=1}^{z-1} frac {x^{k}} {k!} +frac {zx^{z}} {z!}$ from which you cannot get rid of the sum.
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
add a comment |
The answer is no. By making the change of avriable $k=z-n$ and splitting the sum into two parts you get $(z-x)sum_{k=1}^{z-1} frac {x^{k}} {k!} +frac {zx^{z}} {z!}$ from which you cannot get rid of the sum.
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
add a comment |
The answer is no. By making the change of avriable $k=z-n$ and splitting the sum into two parts you get $(z-x)sum_{k=1}^{z-1} frac {x^{k}} {k!} +frac {zx^{z}} {z!}$ from which you cannot get rid of the sum.
The answer is no. By making the change of avriable $k=z-n$ and splitting the sum into two parts you get $(z-x)sum_{k=1}^{z-1} frac {x^{k}} {k!} +frac {zx^{z}} {z!}$ from which you cannot get rid of the sum.
answered Jan 3 at 23:38
Kavi Rama Murthy
51.3k31855
51.3k31855
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
add a comment |
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
Thank you @Kavi Rama Murthy, but you gave the answer. I just use the Gamma function for the last sum and I get the expression.
– Y.L
Jan 4 at 0:28
add a comment |
Sticking to a more standard notation ($z$ normally denotes complex, not integral, number)
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= sum_{k=0}^{n} (n-k) frac{x^k}{k!}
= nsum_{k=0}^n frac{x^k}{k!} - sum_{k=0}^n xfrac{d}{dx} frac{x^k}{k!}\
&= nP_n(x) - xfrac{d}{dx}P_n(x)
end{align}
where $P_n(x) = sum_{k=0}^n frac{x^k}{k!}$ is the partial sum of the exponential's Taylor series. But as can be seen here, the incomplete gamma function $Gamma(n,x) = int_x^{infty} x^{n-1}e^{-x};dx$ may be expressed as
$$Gamma(n,x) = (n-1)! e^{-x} sum_{k=0}^{n-1}frac{x^k}{k!}$$
hence,
$$P_n(x) = frac{Gamma(n+1,x)}{n!} e^x$$
We may then compute
begin{align}
frac{d}{dx}P_n(x)
&= P_n(x) frac{d}{dx} ln P_n(x) = P_n(x) left[,frac{frac{partial}{partial{x}}Gamma(n+1,x)}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x left[,frac{-x^ne^{-x}}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x - frac{x^n}{n!}
end{align}
Solving and simplifying, we get
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= nP_n(x) - xfrac{d}{dx}P_n(x)\
&= frac{1}{n!} left[,(n-x)Gamma(n+1,x)e^x + x^{n+1},right]
end{align}
add a comment |
Sticking to a more standard notation ($z$ normally denotes complex, not integral, number)
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= sum_{k=0}^{n} (n-k) frac{x^k}{k!}
= nsum_{k=0}^n frac{x^k}{k!} - sum_{k=0}^n xfrac{d}{dx} frac{x^k}{k!}\
&= nP_n(x) - xfrac{d}{dx}P_n(x)
end{align}
where $P_n(x) = sum_{k=0}^n frac{x^k}{k!}$ is the partial sum of the exponential's Taylor series. But as can be seen here, the incomplete gamma function $Gamma(n,x) = int_x^{infty} x^{n-1}e^{-x};dx$ may be expressed as
$$Gamma(n,x) = (n-1)! e^{-x} sum_{k=0}^{n-1}frac{x^k}{k!}$$
hence,
$$P_n(x) = frac{Gamma(n+1,x)}{n!} e^x$$
We may then compute
begin{align}
frac{d}{dx}P_n(x)
&= P_n(x) frac{d}{dx} ln P_n(x) = P_n(x) left[,frac{frac{partial}{partial{x}}Gamma(n+1,x)}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x left[,frac{-x^ne^{-x}}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x - frac{x^n}{n!}
end{align}
Solving and simplifying, we get
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= nP_n(x) - xfrac{d}{dx}P_n(x)\
&= frac{1}{n!} left[,(n-x)Gamma(n+1,x)e^x + x^{n+1},right]
end{align}
add a comment |
Sticking to a more standard notation ($z$ normally denotes complex, not integral, number)
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= sum_{k=0}^{n} (n-k) frac{x^k}{k!}
= nsum_{k=0}^n frac{x^k}{k!} - sum_{k=0}^n xfrac{d}{dx} frac{x^k}{k!}\
&= nP_n(x) - xfrac{d}{dx}P_n(x)
end{align}
where $P_n(x) = sum_{k=0}^n frac{x^k}{k!}$ is the partial sum of the exponential's Taylor series. But as can be seen here, the incomplete gamma function $Gamma(n,x) = int_x^{infty} x^{n-1}e^{-x};dx$ may be expressed as
$$Gamma(n,x) = (n-1)! e^{-x} sum_{k=0}^{n-1}frac{x^k}{k!}$$
hence,
$$P_n(x) = frac{Gamma(n+1,x)}{n!} e^x$$
We may then compute
begin{align}
frac{d}{dx}P_n(x)
&= P_n(x) frac{d}{dx} ln P_n(x) = P_n(x) left[,frac{frac{partial}{partial{x}}Gamma(n+1,x)}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x left[,frac{-x^ne^{-x}}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x - frac{x^n}{n!}
end{align}
Solving and simplifying, we get
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= nP_n(x) - xfrac{d}{dx}P_n(x)\
&= frac{1}{n!} left[,(n-x)Gamma(n+1,x)e^x + x^{n+1},right]
end{align}
Sticking to a more standard notation ($z$ normally denotes complex, not integral, number)
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= sum_{k=0}^{n} (n-k) frac{x^k}{k!}
= nsum_{k=0}^n frac{x^k}{k!} - sum_{k=0}^n xfrac{d}{dx} frac{x^k}{k!}\
&= nP_n(x) - xfrac{d}{dx}P_n(x)
end{align}
where $P_n(x) = sum_{k=0}^n frac{x^k}{k!}$ is the partial sum of the exponential's Taylor series. But as can be seen here, the incomplete gamma function $Gamma(n,x) = int_x^{infty} x^{n-1}e^{-x};dx$ may be expressed as
$$Gamma(n,x) = (n-1)! e^{-x} sum_{k=0}^{n-1}frac{x^k}{k!}$$
hence,
$$P_n(x) = frac{Gamma(n+1,x)}{n!} e^x$$
We may then compute
begin{align}
frac{d}{dx}P_n(x)
&= P_n(x) frac{d}{dx} ln P_n(x) = P_n(x) left[,frac{frac{partial}{partial{x}}Gamma(n+1,x)}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x left[,frac{-x^ne^{-x}}{Gamma(n+1,x)} + 1,right]\
&= frac{Gamma(n+1,x)}{n!} e^x - frac{x^n}{n!}
end{align}
Solving and simplifying, we get
begin{align}
sum_{k=0}^n k frac{x^{n-k}}{(n-k)!}
&= nP_n(x) - xfrac{d}{dx}P_n(x)\
&= frac{1}{n!} left[,(n-x)Gamma(n+1,x)e^x + x^{n+1},right]
end{align}
answered Jan 4 at 1:18
adfriedman
3,141169
3,141169
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061092%2fan-equal-expression-to-sumz-n-0n-fracxz-nz-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown