Show that $g_1(mu_1,sigma_1)ast g_2(mu_2,sigma_2)=gleft(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2}right)$












1














The definition (convention) I have been using for the Fourier transform is
$$mathscr{F}[f(t)]=g(omega)=frac{1}{sqrt{2 pi}}int_{t=-infty}^{infty}f(t)e^{iomega t}dttag{1}$$
and the inverse as



$$mathscr{F}^{-1}[g(omega)]=f(t)=frac{1}{sqrt{2 pi}}int_{omega=-infty}^{infty}g(omega)e^{-iomega t}domega$$






Let $g_1(t; mu_1,sigma_1)$ and $g_1(t;mu_2,sigma_2)$ be two Gaussian functions of $t$ with mean $mu$ and width
$sigma$ as indicated.



Show that $g_1(mu_1,sigma_1)ast g_2(mu_2,sigma_2)=gleft(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2}right)$




By the convolution theorem



$$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}mathscr{F}(g_1)mathscr{F}(g_2)tag{2}$$ and insertion of $(1)$ into $(2)$



$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}left[frac{1}{sqrt{2 pi}}operatorname{Largeint}_{t_1=-infty}^{infty}expleft(-frac{(t_1-mu_1)^2}{2sigma_1^2}right)e^{iomega t_1}dt_1right]left[frac{1}{sqrt{2 pi}}{Largeint}_{t_2=-infty}^{infty}expleft(-frac{(t_2-mu_2)^2}{2sigma_2^2}right)e^{iomega t_2}dt_2right]$



it is at this point for which I am completely stuck and don't know how to proceed to complete the proof.





The answer given by the author is:



Author's solution





I don't understand the authors' solution for 3 reasons; firstly, I don't understand why there aren't any integral signs on the RHS of equation $(20)$ & $(21)$.



Secondly, $t$ and $omega$ are the Fourier pairs in this transformation so why is the author using $mu_1$ and $mu_2$ in the complex exponentials?



Lastly, the author mentions the translation property for Fourier transforms:
$$mathscr{F}(t-t_0)=e^{i omega t_0} g(omega)$$
but I fail to see how this is being utilized in the answer.



Is there anyone that could please help me understand the authors' solution or give me any hints or tips about how to complete the proof I began?










share|cite|improve this question






















  • The author is using a rule like cse.yorku.ca/~kosta/CompVis_Notes/… to transform, and using the translate to account for the mu shift in the original Gaussian. The mu is being used for $t_0$.
    – Gaffney
    Jan 4 at 1:13










  • The Fourier transform of a Gaussian is another Gaussian
    – Dylan
    Jan 4 at 8:14
















1














The definition (convention) I have been using for the Fourier transform is
$$mathscr{F}[f(t)]=g(omega)=frac{1}{sqrt{2 pi}}int_{t=-infty}^{infty}f(t)e^{iomega t}dttag{1}$$
and the inverse as



$$mathscr{F}^{-1}[g(omega)]=f(t)=frac{1}{sqrt{2 pi}}int_{omega=-infty}^{infty}g(omega)e^{-iomega t}domega$$






Let $g_1(t; mu_1,sigma_1)$ and $g_1(t;mu_2,sigma_2)$ be two Gaussian functions of $t$ with mean $mu$ and width
$sigma$ as indicated.



Show that $g_1(mu_1,sigma_1)ast g_2(mu_2,sigma_2)=gleft(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2}right)$




By the convolution theorem



$$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}mathscr{F}(g_1)mathscr{F}(g_2)tag{2}$$ and insertion of $(1)$ into $(2)$



$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}left[frac{1}{sqrt{2 pi}}operatorname{Largeint}_{t_1=-infty}^{infty}expleft(-frac{(t_1-mu_1)^2}{2sigma_1^2}right)e^{iomega t_1}dt_1right]left[frac{1}{sqrt{2 pi}}{Largeint}_{t_2=-infty}^{infty}expleft(-frac{(t_2-mu_2)^2}{2sigma_2^2}right)e^{iomega t_2}dt_2right]$



it is at this point for which I am completely stuck and don't know how to proceed to complete the proof.





The answer given by the author is:



Author's solution





I don't understand the authors' solution for 3 reasons; firstly, I don't understand why there aren't any integral signs on the RHS of equation $(20)$ & $(21)$.



Secondly, $t$ and $omega$ are the Fourier pairs in this transformation so why is the author using $mu_1$ and $mu_2$ in the complex exponentials?



Lastly, the author mentions the translation property for Fourier transforms:
$$mathscr{F}(t-t_0)=e^{i omega t_0} g(omega)$$
but I fail to see how this is being utilized in the answer.



Is there anyone that could please help me understand the authors' solution or give me any hints or tips about how to complete the proof I began?










share|cite|improve this question






















  • The author is using a rule like cse.yorku.ca/~kosta/CompVis_Notes/… to transform, and using the translate to account for the mu shift in the original Gaussian. The mu is being used for $t_0$.
    – Gaffney
    Jan 4 at 1:13










  • The Fourier transform of a Gaussian is another Gaussian
    – Dylan
    Jan 4 at 8:14














1












1








1


1





The definition (convention) I have been using for the Fourier transform is
$$mathscr{F}[f(t)]=g(omega)=frac{1}{sqrt{2 pi}}int_{t=-infty}^{infty}f(t)e^{iomega t}dttag{1}$$
and the inverse as



$$mathscr{F}^{-1}[g(omega)]=f(t)=frac{1}{sqrt{2 pi}}int_{omega=-infty}^{infty}g(omega)e^{-iomega t}domega$$






Let $g_1(t; mu_1,sigma_1)$ and $g_1(t;mu_2,sigma_2)$ be two Gaussian functions of $t$ with mean $mu$ and width
$sigma$ as indicated.



Show that $g_1(mu_1,sigma_1)ast g_2(mu_2,sigma_2)=gleft(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2}right)$




By the convolution theorem



$$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}mathscr{F}(g_1)mathscr{F}(g_2)tag{2}$$ and insertion of $(1)$ into $(2)$



$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}left[frac{1}{sqrt{2 pi}}operatorname{Largeint}_{t_1=-infty}^{infty}expleft(-frac{(t_1-mu_1)^2}{2sigma_1^2}right)e^{iomega t_1}dt_1right]left[frac{1}{sqrt{2 pi}}{Largeint}_{t_2=-infty}^{infty}expleft(-frac{(t_2-mu_2)^2}{2sigma_2^2}right)e^{iomega t_2}dt_2right]$



it is at this point for which I am completely stuck and don't know how to proceed to complete the proof.





The answer given by the author is:



Author's solution





I don't understand the authors' solution for 3 reasons; firstly, I don't understand why there aren't any integral signs on the RHS of equation $(20)$ & $(21)$.



Secondly, $t$ and $omega$ are the Fourier pairs in this transformation so why is the author using $mu_1$ and $mu_2$ in the complex exponentials?



Lastly, the author mentions the translation property for Fourier transforms:
$$mathscr{F}(t-t_0)=e^{i omega t_0} g(omega)$$
but I fail to see how this is being utilized in the answer.



Is there anyone that could please help me understand the authors' solution or give me any hints or tips about how to complete the proof I began?










share|cite|improve this question













The definition (convention) I have been using for the Fourier transform is
$$mathscr{F}[f(t)]=g(omega)=frac{1}{sqrt{2 pi}}int_{t=-infty}^{infty}f(t)e^{iomega t}dttag{1}$$
and the inverse as



$$mathscr{F}^{-1}[g(omega)]=f(t)=frac{1}{sqrt{2 pi}}int_{omega=-infty}^{infty}g(omega)e^{-iomega t}domega$$






Let $g_1(t; mu_1,sigma_1)$ and $g_1(t;mu_2,sigma_2)$ be two Gaussian functions of $t$ with mean $mu$ and width
$sigma$ as indicated.



Show that $g_1(mu_1,sigma_1)ast g_2(mu_2,sigma_2)=gleft(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2}right)$




By the convolution theorem



$$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}mathscr{F}(g_1)mathscr{F}(g_2)tag{2}$$ and insertion of $(1)$ into $(2)$



$mathscr{F}(g_1 ast g_ 2)=sqrt{2pi}left[frac{1}{sqrt{2 pi}}operatorname{Largeint}_{t_1=-infty}^{infty}expleft(-frac{(t_1-mu_1)^2}{2sigma_1^2}right)e^{iomega t_1}dt_1right]left[frac{1}{sqrt{2 pi}}{Largeint}_{t_2=-infty}^{infty}expleft(-frac{(t_2-mu_2)^2}{2sigma_2^2}right)e^{iomega t_2}dt_2right]$



it is at this point for which I am completely stuck and don't know how to proceed to complete the proof.





The answer given by the author is:



Author's solution





I don't understand the authors' solution for 3 reasons; firstly, I don't understand why there aren't any integral signs on the RHS of equation $(20)$ & $(21)$.



Secondly, $t$ and $omega$ are the Fourier pairs in this transformation so why is the author using $mu_1$ and $mu_2$ in the complex exponentials?



Lastly, the author mentions the translation property for Fourier transforms:
$$mathscr{F}(t-t_0)=e^{i omega t_0} g(omega)$$
but I fail to see how this is being utilized in the answer.



Is there anyone that could please help me understand the authors' solution or give me any hints or tips about how to complete the proof I began?







integration fourier-analysis fourier-transform convolution






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 4 at 0:22









BLAZE

6,071112754




6,071112754












  • The author is using a rule like cse.yorku.ca/~kosta/CompVis_Notes/… to transform, and using the translate to account for the mu shift in the original Gaussian. The mu is being used for $t_0$.
    – Gaffney
    Jan 4 at 1:13










  • The Fourier transform of a Gaussian is another Gaussian
    – Dylan
    Jan 4 at 8:14


















  • The author is using a rule like cse.yorku.ca/~kosta/CompVis_Notes/… to transform, and using the translate to account for the mu shift in the original Gaussian. The mu is being used for $t_0$.
    – Gaffney
    Jan 4 at 1:13










  • The Fourier transform of a Gaussian is another Gaussian
    – Dylan
    Jan 4 at 8:14
















The author is using a rule like cse.yorku.ca/~kosta/CompVis_Notes/… to transform, and using the translate to account for the mu shift in the original Gaussian. The mu is being used for $t_0$.
– Gaffney
Jan 4 at 1:13




The author is using a rule like cse.yorku.ca/~kosta/CompVis_Notes/… to transform, and using the translate to account for the mu shift in the original Gaussian. The mu is being used for $t_0$.
– Gaffney
Jan 4 at 1:13












The Fourier transform of a Gaussian is another Gaussian
– Dylan
Jan 4 at 8:14




The Fourier transform of a Gaussian is another Gaussian
– Dylan
Jan 4 at 8:14










1 Answer
1






active

oldest

votes


















1














The trick is to simplify everything be completing the square and recognizing that any normal distribution will integrate to 1.



For example
$$mathscr{F}(g_1) = frac{1}{sqrt{2pi}} frac{1}{sqrt{2pisigma_1^2}}
int_{-infty}^{infty}exp(-frac{(t_1-mu_1)^2}{2sigma_1^2} + iomega t_1)dt_1$$

by completing the square
$$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
int_{-infty}^{infty}exp(-frac{t_1^2-2t_1(mu_1+isigma_1^2omega)+(mu_1+isigma_1^2omega)^2 - 2mu_1 isigma_1^2omega + 4sigma_1^4omega^2}{2sigma_1^2})dt_1
$$



$$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
int_{-infty}^{infty}exp(-frac{(t_1-(mu_1+isigma_1^2omega))^2}{2sigma_1^2})
exp(mu_1 iomega - 2sigma_1^2omega^2)
dt_1
$$



Integrating out the normal distribution with mean $mu_1+isigma_1^2omega$ and variance $sigma_1^2$ makes this



$$=frac{1}{sqrt{2pi}}exp(mu_1 iomega - 2sigma_1^2omega^2)$$



Similarly
$$mathscr{F}(g_2) = frac{1}{sqrt{2pi}} exp(mu_2 iomega - 2sigma_2^2omega^2)$$



So
$$mathscr{F}(g_1 * g_2) = frac{1}{sqrt{2pi}}
exp((mu_1+mu_2) iomega - 2(sigma_1^2+sigma_2^2)omega^2)$$



Then the inverse Fourier transform of this is
$$frac{1}{2pi}int_{-infty}^{infty}
exp((mu_1+mu_2-t) iomega - 2(sigma_1^2+sigma_2^2)omega^2)
domega
$$



$$=frac{1}{2pi}int_{-infty}^{infty}
exp(-frac{omega^2-iomegafrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}
-(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2
+(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
{frac{1}{2(sigma_1^2+sigma_2^2)}})
domega
$$



$$=frac{1}{2pi}int_{-infty}^{infty}
exp(-frac{(omega^2-ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
{frac{1}{2(sigma_1^2+sigma_2^2)}})
exp((frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2)
domega
$$



Integrating out the normal distribution with mean $ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}$ and variance $frac{1}{sigma_1^2+sigma_2^2}$ makes this



$$=frac{1}{sqrt{2pi(sigma_1^2+sigma_2^2)}}
exp((frac{t-(mu_1+mu_2)}{2(sigma_1^2+sigma_2^2)})^2)$$



which is $g(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2})$ as desired.






share|cite|improve this answer








New contributor




Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061182%2fshow-that-g-1-mu-1-sigma-1-ast-g-2-mu-2-sigma-2-g-left-mu-1-mu-2-sqrt%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    The trick is to simplify everything be completing the square and recognizing that any normal distribution will integrate to 1.



    For example
    $$mathscr{F}(g_1) = frac{1}{sqrt{2pi}} frac{1}{sqrt{2pisigma_1^2}}
    int_{-infty}^{infty}exp(-frac{(t_1-mu_1)^2}{2sigma_1^2} + iomega t_1)dt_1$$

    by completing the square
    $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
    int_{-infty}^{infty}exp(-frac{t_1^2-2t_1(mu_1+isigma_1^2omega)+(mu_1+isigma_1^2omega)^2 - 2mu_1 isigma_1^2omega + 4sigma_1^4omega^2}{2sigma_1^2})dt_1
    $$



    $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
    int_{-infty}^{infty}exp(-frac{(t_1-(mu_1+isigma_1^2omega))^2}{2sigma_1^2})
    exp(mu_1 iomega - 2sigma_1^2omega^2)
    dt_1
    $$



    Integrating out the normal distribution with mean $mu_1+isigma_1^2omega$ and variance $sigma_1^2$ makes this



    $$=frac{1}{sqrt{2pi}}exp(mu_1 iomega - 2sigma_1^2omega^2)$$



    Similarly
    $$mathscr{F}(g_2) = frac{1}{sqrt{2pi}} exp(mu_2 iomega - 2sigma_2^2omega^2)$$



    So
    $$mathscr{F}(g_1 * g_2) = frac{1}{sqrt{2pi}}
    exp((mu_1+mu_2) iomega - 2(sigma_1^2+sigma_2^2)omega^2)$$



    Then the inverse Fourier transform of this is
    $$frac{1}{2pi}int_{-infty}^{infty}
    exp((mu_1+mu_2-t) iomega - 2(sigma_1^2+sigma_2^2)omega^2)
    domega
    $$



    $$=frac{1}{2pi}int_{-infty}^{infty}
    exp(-frac{omega^2-iomegafrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}
    -(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2
    +(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
    {frac{1}{2(sigma_1^2+sigma_2^2)}})
    domega
    $$



    $$=frac{1}{2pi}int_{-infty}^{infty}
    exp(-frac{(omega^2-ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
    {frac{1}{2(sigma_1^2+sigma_2^2)}})
    exp((frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2)
    domega
    $$



    Integrating out the normal distribution with mean $ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}$ and variance $frac{1}{sigma_1^2+sigma_2^2}$ makes this



    $$=frac{1}{sqrt{2pi(sigma_1^2+sigma_2^2)}}
    exp((frac{t-(mu_1+mu_2)}{2(sigma_1^2+sigma_2^2)})^2)$$



    which is $g(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2})$ as desired.






    share|cite|improve this answer








    New contributor




    Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      1














      The trick is to simplify everything be completing the square and recognizing that any normal distribution will integrate to 1.



      For example
      $$mathscr{F}(g_1) = frac{1}{sqrt{2pi}} frac{1}{sqrt{2pisigma_1^2}}
      int_{-infty}^{infty}exp(-frac{(t_1-mu_1)^2}{2sigma_1^2} + iomega t_1)dt_1$$

      by completing the square
      $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
      int_{-infty}^{infty}exp(-frac{t_1^2-2t_1(mu_1+isigma_1^2omega)+(mu_1+isigma_1^2omega)^2 - 2mu_1 isigma_1^2omega + 4sigma_1^4omega^2}{2sigma_1^2})dt_1
      $$



      $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
      int_{-infty}^{infty}exp(-frac{(t_1-(mu_1+isigma_1^2omega))^2}{2sigma_1^2})
      exp(mu_1 iomega - 2sigma_1^2omega^2)
      dt_1
      $$



      Integrating out the normal distribution with mean $mu_1+isigma_1^2omega$ and variance $sigma_1^2$ makes this



      $$=frac{1}{sqrt{2pi}}exp(mu_1 iomega - 2sigma_1^2omega^2)$$



      Similarly
      $$mathscr{F}(g_2) = frac{1}{sqrt{2pi}} exp(mu_2 iomega - 2sigma_2^2omega^2)$$



      So
      $$mathscr{F}(g_1 * g_2) = frac{1}{sqrt{2pi}}
      exp((mu_1+mu_2) iomega - 2(sigma_1^2+sigma_2^2)omega^2)$$



      Then the inverse Fourier transform of this is
      $$frac{1}{2pi}int_{-infty}^{infty}
      exp((mu_1+mu_2-t) iomega - 2(sigma_1^2+sigma_2^2)omega^2)
      domega
      $$



      $$=frac{1}{2pi}int_{-infty}^{infty}
      exp(-frac{omega^2-iomegafrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}
      -(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2
      +(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
      {frac{1}{2(sigma_1^2+sigma_2^2)}})
      domega
      $$



      $$=frac{1}{2pi}int_{-infty}^{infty}
      exp(-frac{(omega^2-ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
      {frac{1}{2(sigma_1^2+sigma_2^2)}})
      exp((frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2)
      domega
      $$



      Integrating out the normal distribution with mean $ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}$ and variance $frac{1}{sigma_1^2+sigma_2^2}$ makes this



      $$=frac{1}{sqrt{2pi(sigma_1^2+sigma_2^2)}}
      exp((frac{t-(mu_1+mu_2)}{2(sigma_1^2+sigma_2^2)})^2)$$



      which is $g(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2})$ as desired.






      share|cite|improve this answer








      New contributor




      Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





















        1












        1








        1






        The trick is to simplify everything be completing the square and recognizing that any normal distribution will integrate to 1.



        For example
        $$mathscr{F}(g_1) = frac{1}{sqrt{2pi}} frac{1}{sqrt{2pisigma_1^2}}
        int_{-infty}^{infty}exp(-frac{(t_1-mu_1)^2}{2sigma_1^2} + iomega t_1)dt_1$$

        by completing the square
        $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
        int_{-infty}^{infty}exp(-frac{t_1^2-2t_1(mu_1+isigma_1^2omega)+(mu_1+isigma_1^2omega)^2 - 2mu_1 isigma_1^2omega + 4sigma_1^4omega^2}{2sigma_1^2})dt_1
        $$



        $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
        int_{-infty}^{infty}exp(-frac{(t_1-(mu_1+isigma_1^2omega))^2}{2sigma_1^2})
        exp(mu_1 iomega - 2sigma_1^2omega^2)
        dt_1
        $$



        Integrating out the normal distribution with mean $mu_1+isigma_1^2omega$ and variance $sigma_1^2$ makes this



        $$=frac{1}{sqrt{2pi}}exp(mu_1 iomega - 2sigma_1^2omega^2)$$



        Similarly
        $$mathscr{F}(g_2) = frac{1}{sqrt{2pi}} exp(mu_2 iomega - 2sigma_2^2omega^2)$$



        So
        $$mathscr{F}(g_1 * g_2) = frac{1}{sqrt{2pi}}
        exp((mu_1+mu_2) iomega - 2(sigma_1^2+sigma_2^2)omega^2)$$



        Then the inverse Fourier transform of this is
        $$frac{1}{2pi}int_{-infty}^{infty}
        exp((mu_1+mu_2-t) iomega - 2(sigma_1^2+sigma_2^2)omega^2)
        domega
        $$



        $$=frac{1}{2pi}int_{-infty}^{infty}
        exp(-frac{omega^2-iomegafrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}
        -(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2
        +(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
        {frac{1}{2(sigma_1^2+sigma_2^2)}})
        domega
        $$



        $$=frac{1}{2pi}int_{-infty}^{infty}
        exp(-frac{(omega^2-ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
        {frac{1}{2(sigma_1^2+sigma_2^2)}})
        exp((frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2)
        domega
        $$



        Integrating out the normal distribution with mean $ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}$ and variance $frac{1}{sigma_1^2+sigma_2^2}$ makes this



        $$=frac{1}{sqrt{2pi(sigma_1^2+sigma_2^2)}}
        exp((frac{t-(mu_1+mu_2)}{2(sigma_1^2+sigma_2^2)})^2)$$



        which is $g(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2})$ as desired.






        share|cite|improve this answer








        New contributor




        Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        The trick is to simplify everything be completing the square and recognizing that any normal distribution will integrate to 1.



        For example
        $$mathscr{F}(g_1) = frac{1}{sqrt{2pi}} frac{1}{sqrt{2pisigma_1^2}}
        int_{-infty}^{infty}exp(-frac{(t_1-mu_1)^2}{2sigma_1^2} + iomega t_1)dt_1$$

        by completing the square
        $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
        int_{-infty}^{infty}exp(-frac{t_1^2-2t_1(mu_1+isigma_1^2omega)+(mu_1+isigma_1^2omega)^2 - 2mu_1 isigma_1^2omega + 4sigma_1^4omega^2}{2sigma_1^2})dt_1
        $$



        $$=frac{1}{sqrt{2pi}}frac{1}{sqrt{2pisigma_1^2}}
        int_{-infty}^{infty}exp(-frac{(t_1-(mu_1+isigma_1^2omega))^2}{2sigma_1^2})
        exp(mu_1 iomega - 2sigma_1^2omega^2)
        dt_1
        $$



        Integrating out the normal distribution with mean $mu_1+isigma_1^2omega$ and variance $sigma_1^2$ makes this



        $$=frac{1}{sqrt{2pi}}exp(mu_1 iomega - 2sigma_1^2omega^2)$$



        Similarly
        $$mathscr{F}(g_2) = frac{1}{sqrt{2pi}} exp(mu_2 iomega - 2sigma_2^2omega^2)$$



        So
        $$mathscr{F}(g_1 * g_2) = frac{1}{sqrt{2pi}}
        exp((mu_1+mu_2) iomega - 2(sigma_1^2+sigma_2^2)omega^2)$$



        Then the inverse Fourier transform of this is
        $$frac{1}{2pi}int_{-infty}^{infty}
        exp((mu_1+mu_2-t) iomega - 2(sigma_1^2+sigma_2^2)omega^2)
        domega
        $$



        $$=frac{1}{2pi}int_{-infty}^{infty}
        exp(-frac{omega^2-iomegafrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}
        -(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2
        +(frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
        {frac{1}{2(sigma_1^2+sigma_2^2)}})
        domega
        $$



        $$=frac{1}{2pi}int_{-infty}^{infty}
        exp(-frac{(omega^2-ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2}
        {frac{1}{2(sigma_1^2+sigma_2^2)}})
        exp((frac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)})^2)
        domega
        $$



        Integrating out the normal distribution with mean $ifrac{mu_1+mu_2-t}{2(sigma_1^2+sigma_2^2)}$ and variance $frac{1}{sigma_1^2+sigma_2^2}$ makes this



        $$=frac{1}{sqrt{2pi(sigma_1^2+sigma_2^2)}}
        exp((frac{t-(mu_1+mu_2)}{2(sigma_1^2+sigma_2^2)})^2)$$



        which is $g(mu_1+mu_2,sqrt{sigma_1^2+sigma_2^2})$ as desired.







        share|cite|improve this answer








        New contributor




        Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        share|cite|improve this answer



        share|cite|improve this answer






        New contributor




        Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered Jan 4 at 3:50









        Erik Parkinson

        9159




        9159




        New contributor




        Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        Erik Parkinson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061182%2fshow-that-g-1-mu-1-sigma-1-ast-g-2-mu-2-sigma-2-g-left-mu-1-mu-2-sqrt%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8