Sine Wave Tidal written question [on hold]












0














would appreciate some help working out the sine equation for the following question please:



Depth of water is 6m at low tide and 16m at high tide, which is 6 hours later. Assuming the motion of the water is a simple harmonic, draw a graph to show how the water varies with time over a period of 12 hours, commencing at low tide.










share|cite|improve this question







New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











put on hold as off-topic by Aloizio Macedo Jan 5 at 6:25


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Aloizio Macedo

If this question can be reworded to fit the rules in the help center, please edit the question.













  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Jan 5 at 6:24
















0














would appreciate some help working out the sine equation for the following question please:



Depth of water is 6m at low tide and 16m at high tide, which is 6 hours later. Assuming the motion of the water is a simple harmonic, draw a graph to show how the water varies with time over a period of 12 hours, commencing at low tide.










share|cite|improve this question







New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











put on hold as off-topic by Aloizio Macedo Jan 5 at 6:25


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Aloizio Macedo

If this question can be reworded to fit the rules in the help center, please edit the question.













  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Jan 5 at 6:24














0












0








0







would appreciate some help working out the sine equation for the following question please:



Depth of water is 6m at low tide and 16m at high tide, which is 6 hours later. Assuming the motion of the water is a simple harmonic, draw a graph to show how the water varies with time over a period of 12 hours, commencing at low tide.










share|cite|improve this question







New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











would appreciate some help working out the sine equation for the following question please:



Depth of water is 6m at low tide and 16m at high tide, which is 6 hours later. Assuming the motion of the water is a simple harmonic, draw a graph to show how the water varies with time over a period of 12 hours, commencing at low tide.







trigonometry






share|cite|improve this question







New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Jan 4 at 7:48









DoccurDoccur

41




41




New contributor




Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Doccur is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as off-topic by Aloizio Macedo Jan 5 at 6:25


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Aloizio Macedo

If this question can be reworded to fit the rules in the help center, please edit the question.




put on hold as off-topic by Aloizio Macedo Jan 5 at 6:25


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Aloizio Macedo

If this question can be reworded to fit the rules in the help center, please edit the question.












  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Jan 5 at 6:24


















  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Jan 5 at 6:24
















Comments are not for extended discussion; this conversation has been moved to chat.
– Aloizio Macedo
Jan 5 at 6:24




Comments are not for extended discussion; this conversation has been moved to chat.
– Aloizio Macedo
Jan 5 at 6:24










1 Answer
1






active

oldest

votes


















0














We have the general form



$$y = asin b(t-d)+c$$



where:





  • $vert avert$ is the amplitude.


  • $b$ is the frequency.


  • $(d, c)$ is the horizontal and vertical shift.


Ignoring units for now, at low tide, the depth is $6$ and at high tide, the depth is $16$. Therefore, the middle point/equilibrium point is at $frac{16+6}{2} = frac{22}{2} = 11$. From here, you can deduce that:





  • $a$ will be the height of the crest or the depth of the trough relative to the equilibrium point. Hence, $a = 16-11 = 5$ or $a = vert 6-11vert = vert -5vert = 5$.

  • The graph is shifted vertically. Initially, the low-tide would be located at $-5$ (negative amplitude) but it’s now at $+6$ (low-tide), so $c = 11$.

  • It takes $6$ hours to go from low-tide to high-tide. This means it would take $6$ hours to go back to low-tide and complete the cycle. Hence, there is one cycle in $12$ hours. We will treat $12$ as our $2pi$ in normal trigonometry, so we can obtain $b$ through a ratio:


$$frac{1}{12} = frac{b}{2pi} iff b = frac{pi}{6}$$




  • The graph is shifted horizontally. In a regular sine graph would start from the point of equilibrium. Here, however, you start from the low-tide. The shift must be by $frac{T}{4} = 3$, so $c = 3$.


Adding all this together, you get



$$y = 5sinfrac{pi}{6}(x-3)+11$$



which becomes



$$y = 5sinleft(frac{pi}{6}x-frac{pi}{2}right)+11$$



If you’ve studied cosine graphs as well, you would notice $c = 3$ is really just $frac{T}{4}$ (a quarter of the period), and the shift $left(x-frac{T}{4}right)$ would produce a negative cosine graph, so you could also use



$$y = -5cosleft(frac{pi}{6}xright)+11$$



Here are the plots of the graphs.






share|cite|improve this answer






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    We have the general form



    $$y = asin b(t-d)+c$$



    where:





    • $vert avert$ is the amplitude.


    • $b$ is the frequency.


    • $(d, c)$ is the horizontal and vertical shift.


    Ignoring units for now, at low tide, the depth is $6$ and at high tide, the depth is $16$. Therefore, the middle point/equilibrium point is at $frac{16+6}{2} = frac{22}{2} = 11$. From here, you can deduce that:





    • $a$ will be the height of the crest or the depth of the trough relative to the equilibrium point. Hence, $a = 16-11 = 5$ or $a = vert 6-11vert = vert -5vert = 5$.

    • The graph is shifted vertically. Initially, the low-tide would be located at $-5$ (negative amplitude) but it’s now at $+6$ (low-tide), so $c = 11$.

    • It takes $6$ hours to go from low-tide to high-tide. This means it would take $6$ hours to go back to low-tide and complete the cycle. Hence, there is one cycle in $12$ hours. We will treat $12$ as our $2pi$ in normal trigonometry, so we can obtain $b$ through a ratio:


    $$frac{1}{12} = frac{b}{2pi} iff b = frac{pi}{6}$$




    • The graph is shifted horizontally. In a regular sine graph would start from the point of equilibrium. Here, however, you start from the low-tide. The shift must be by $frac{T}{4} = 3$, so $c = 3$.


    Adding all this together, you get



    $$y = 5sinfrac{pi}{6}(x-3)+11$$



    which becomes



    $$y = 5sinleft(frac{pi}{6}x-frac{pi}{2}right)+11$$



    If you’ve studied cosine graphs as well, you would notice $c = 3$ is really just $frac{T}{4}$ (a quarter of the period), and the shift $left(x-frac{T}{4}right)$ would produce a negative cosine graph, so you could also use



    $$y = -5cosleft(frac{pi}{6}xright)+11$$



    Here are the plots of the graphs.






    share|cite|improve this answer




























      0














      We have the general form



      $$y = asin b(t-d)+c$$



      where:





      • $vert avert$ is the amplitude.


      • $b$ is the frequency.


      • $(d, c)$ is the horizontal and vertical shift.


      Ignoring units for now, at low tide, the depth is $6$ and at high tide, the depth is $16$. Therefore, the middle point/equilibrium point is at $frac{16+6}{2} = frac{22}{2} = 11$. From here, you can deduce that:





      • $a$ will be the height of the crest or the depth of the trough relative to the equilibrium point. Hence, $a = 16-11 = 5$ or $a = vert 6-11vert = vert -5vert = 5$.

      • The graph is shifted vertically. Initially, the low-tide would be located at $-5$ (negative amplitude) but it’s now at $+6$ (low-tide), so $c = 11$.

      • It takes $6$ hours to go from low-tide to high-tide. This means it would take $6$ hours to go back to low-tide and complete the cycle. Hence, there is one cycle in $12$ hours. We will treat $12$ as our $2pi$ in normal trigonometry, so we can obtain $b$ through a ratio:


      $$frac{1}{12} = frac{b}{2pi} iff b = frac{pi}{6}$$




      • The graph is shifted horizontally. In a regular sine graph would start from the point of equilibrium. Here, however, you start from the low-tide. The shift must be by $frac{T}{4} = 3$, so $c = 3$.


      Adding all this together, you get



      $$y = 5sinfrac{pi}{6}(x-3)+11$$



      which becomes



      $$y = 5sinleft(frac{pi}{6}x-frac{pi}{2}right)+11$$



      If you’ve studied cosine graphs as well, you would notice $c = 3$ is really just $frac{T}{4}$ (a quarter of the period), and the shift $left(x-frac{T}{4}right)$ would produce a negative cosine graph, so you could also use



      $$y = -5cosleft(frac{pi}{6}xright)+11$$



      Here are the plots of the graphs.






      share|cite|improve this answer


























        0












        0








        0






        We have the general form



        $$y = asin b(t-d)+c$$



        where:





        • $vert avert$ is the amplitude.


        • $b$ is the frequency.


        • $(d, c)$ is the horizontal and vertical shift.


        Ignoring units for now, at low tide, the depth is $6$ and at high tide, the depth is $16$. Therefore, the middle point/equilibrium point is at $frac{16+6}{2} = frac{22}{2} = 11$. From here, you can deduce that:





        • $a$ will be the height of the crest or the depth of the trough relative to the equilibrium point. Hence, $a = 16-11 = 5$ or $a = vert 6-11vert = vert -5vert = 5$.

        • The graph is shifted vertically. Initially, the low-tide would be located at $-5$ (negative amplitude) but it’s now at $+6$ (low-tide), so $c = 11$.

        • It takes $6$ hours to go from low-tide to high-tide. This means it would take $6$ hours to go back to low-tide and complete the cycle. Hence, there is one cycle in $12$ hours. We will treat $12$ as our $2pi$ in normal trigonometry, so we can obtain $b$ through a ratio:


        $$frac{1}{12} = frac{b}{2pi} iff b = frac{pi}{6}$$




        • The graph is shifted horizontally. In a regular sine graph would start from the point of equilibrium. Here, however, you start from the low-tide. The shift must be by $frac{T}{4} = 3$, so $c = 3$.


        Adding all this together, you get



        $$y = 5sinfrac{pi}{6}(x-3)+11$$



        which becomes



        $$y = 5sinleft(frac{pi}{6}x-frac{pi}{2}right)+11$$



        If you’ve studied cosine graphs as well, you would notice $c = 3$ is really just $frac{T}{4}$ (a quarter of the period), and the shift $left(x-frac{T}{4}right)$ would produce a negative cosine graph, so you could also use



        $$y = -5cosleft(frac{pi}{6}xright)+11$$



        Here are the plots of the graphs.






        share|cite|improve this answer














        We have the general form



        $$y = asin b(t-d)+c$$



        where:





        • $vert avert$ is the amplitude.


        • $b$ is the frequency.


        • $(d, c)$ is the horizontal and vertical shift.


        Ignoring units for now, at low tide, the depth is $6$ and at high tide, the depth is $16$. Therefore, the middle point/equilibrium point is at $frac{16+6}{2} = frac{22}{2} = 11$. From here, you can deduce that:





        • $a$ will be the height of the crest or the depth of the trough relative to the equilibrium point. Hence, $a = 16-11 = 5$ or $a = vert 6-11vert = vert -5vert = 5$.

        • The graph is shifted vertically. Initially, the low-tide would be located at $-5$ (negative amplitude) but it’s now at $+6$ (low-tide), so $c = 11$.

        • It takes $6$ hours to go from low-tide to high-tide. This means it would take $6$ hours to go back to low-tide and complete the cycle. Hence, there is one cycle in $12$ hours. We will treat $12$ as our $2pi$ in normal trigonometry, so we can obtain $b$ through a ratio:


        $$frac{1}{12} = frac{b}{2pi} iff b = frac{pi}{6}$$




        • The graph is shifted horizontally. In a regular sine graph would start from the point of equilibrium. Here, however, you start from the low-tide. The shift must be by $frac{T}{4} = 3$, so $c = 3$.


        Adding all this together, you get



        $$y = 5sinfrac{pi}{6}(x-3)+11$$



        which becomes



        $$y = 5sinleft(frac{pi}{6}x-frac{pi}{2}right)+11$$



        If you’ve studied cosine graphs as well, you would notice $c = 3$ is really just $frac{T}{4}$ (a quarter of the period), and the shift $left(x-frac{T}{4}right)$ would produce a negative cosine graph, so you could also use



        $$y = -5cosleft(frac{pi}{6}xright)+11$$



        Here are the plots of the graphs.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 4 at 9:09

























        answered Jan 4 at 8:22









        KM101KM101

        5,5511423




        5,5511423















            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8