Compute $ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} ,...












3














I am having problems with one integral:



$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$



The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?










share|cite|improve this question

















This question has an open bounty worth +100
reputation from dleal ending in 2 days.


This question has not received enough attention.


i would like to know if this integral is solvable or not. If solvable, I would like a solution.
















  • maybe let the entire denominator equal u?
    – user29418
    Dec 4 '18 at 22:03










  • Are the constants positive?
    – Yuri Negometyanov
    2 days ago
















3














I am having problems with one integral:



$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$



The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?










share|cite|improve this question

















This question has an open bounty worth +100
reputation from dleal ending in 2 days.


This question has not received enough attention.


i would like to know if this integral is solvable or not. If solvable, I would like a solution.
















  • maybe let the entire denominator equal u?
    – user29418
    Dec 4 '18 at 22:03










  • Are the constants positive?
    – Yuri Negometyanov
    2 days ago














3












3








3


2





I am having problems with one integral:



$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$



The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?










share|cite|improve this question















I am having problems with one integral:



$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$



The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?







integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 4 '18 at 22:19









Did

246k23221456




246k23221456










asked Dec 4 '18 at 21:58









dlealdleal

879




879






This question has an open bounty worth +100
reputation from dleal ending in 2 days.


This question has not received enough attention.


i would like to know if this integral is solvable or not. If solvable, I would like a solution.








This question has an open bounty worth +100
reputation from dleal ending in 2 days.


This question has not received enough attention.


i would like to know if this integral is solvable or not. If solvable, I would like a solution.














  • maybe let the entire denominator equal u?
    – user29418
    Dec 4 '18 at 22:03










  • Are the constants positive?
    – Yuri Negometyanov
    2 days ago


















  • maybe let the entire denominator equal u?
    – user29418
    Dec 4 '18 at 22:03










  • Are the constants positive?
    – Yuri Negometyanov
    2 days ago
















maybe let the entire denominator equal u?
– user29418
Dec 4 '18 at 22:03




maybe let the entire denominator equal u?
– user29418
Dec 4 '18 at 22:03












Are the constants positive?
– Yuri Negometyanov
2 days ago




Are the constants positive?
– Yuri Negometyanov
2 days ago










1 Answer
1






active

oldest

votes


















3














Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$



If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,



$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$



I.e. can be obtained closed form of the given integral in the elementary functions.



If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$



$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$

$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$

Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$



Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}

$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$






share|cite|improve this answer



















  • 1




    thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
    – dleal
    yesterday








  • 1




    @dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
    – Yuri Negometyanov
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026238%2fcompute-int-frac1-beta-1-cdot-e-gammam-cdot-t-e-gamma-cdot-t%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3














Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$



If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,



$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$



I.e. can be obtained closed form of the given integral in the elementary functions.



If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$



$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$

$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$

Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$



Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}

$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$






share|cite|improve this answer



















  • 1




    thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
    – dleal
    yesterday








  • 1




    @dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
    – Yuri Negometyanov
    yesterday
















3














Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$



If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,



$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$



I.e. can be obtained closed form of the given integral in the elementary functions.



If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$



$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$

$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$

Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$



Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}

$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$






share|cite|improve this answer



















  • 1




    thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
    – dleal
    yesterday








  • 1




    @dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
    – Yuri Negometyanov
    yesterday














3












3








3






Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$



If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,



$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$



I.e. can be obtained closed form of the given integral in the elementary functions.



If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$



$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$

$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$

Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$



Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}

$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$






share|cite|improve this answer














Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$



If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,



$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$



I.e. can be obtained closed form of the given integral in the elementary functions.



If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$



$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$

$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$

Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$



Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}

$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









Yuri NegometyanovYuri Negometyanov

10.9k1727




10.9k1727








  • 1




    thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
    – dleal
    yesterday








  • 1




    @dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
    – Yuri Negometyanov
    yesterday














  • 1




    thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
    – dleal
    yesterday








  • 1




    @dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
    – Yuri Negometyanov
    yesterday








1




1




thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
– dleal
yesterday






thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
– dleal
yesterday






1




1




@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
– Yuri Negometyanov
yesterday




@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
– Yuri Negometyanov
yesterday


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026238%2fcompute-int-frac1-beta-1-cdot-e-gammam-cdot-t-e-gamma-cdot-t%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

1300-talet

1300-talet

Display a custom attribute below product name in the front-end Magento 1.9.3.8