Finding the lower and upper Riemann Sums
I'm having a hard time figuring this questions out. I've looked on google and on the book and so far I haven't gotten a good explanation for this questions. I know they aren't hard and are probably easy but I've haven't gotten a good explanation.
Find the lower and Upper Riemann Sums $L(P)$ and $U(P)$ for the function $f(x)=x^2$ on the interval $[0,1]$ using the partition $P={0,frac12,
frac34,1}$Given that $int_1^3 f(x)~dx=4$ and $int_1^5 f(x)~dx=7$,
find $int_3^5 f(x)~dx$.Given that $int_1^3 f(x)~dx=4$ and $int_1^3 g(x)~dx=2$,
find $int_1^3 3f(x)-g(x)~dx$.
definite-integrals riemann-sum
add a comment |
I'm having a hard time figuring this questions out. I've looked on google and on the book and so far I haven't gotten a good explanation for this questions. I know they aren't hard and are probably easy but I've haven't gotten a good explanation.
Find the lower and Upper Riemann Sums $L(P)$ and $U(P)$ for the function $f(x)=x^2$ on the interval $[0,1]$ using the partition $P={0,frac12,
frac34,1}$Given that $int_1^3 f(x)~dx=4$ and $int_1^5 f(x)~dx=7$,
find $int_3^5 f(x)~dx$.Given that $int_1^3 f(x)~dx=4$ and $int_1^3 g(x)~dx=2$,
find $int_1^3 3f(x)-g(x)~dx$.
definite-integrals riemann-sum
add a comment |
I'm having a hard time figuring this questions out. I've looked on google and on the book and so far I haven't gotten a good explanation for this questions. I know they aren't hard and are probably easy but I've haven't gotten a good explanation.
Find the lower and Upper Riemann Sums $L(P)$ and $U(P)$ for the function $f(x)=x^2$ on the interval $[0,1]$ using the partition $P={0,frac12,
frac34,1}$Given that $int_1^3 f(x)~dx=4$ and $int_1^5 f(x)~dx=7$,
find $int_3^5 f(x)~dx$.Given that $int_1^3 f(x)~dx=4$ and $int_1^3 g(x)~dx=2$,
find $int_1^3 3f(x)-g(x)~dx$.
definite-integrals riemann-sum
I'm having a hard time figuring this questions out. I've looked on google and on the book and so far I haven't gotten a good explanation for this questions. I know they aren't hard and are probably easy but I've haven't gotten a good explanation.
Find the lower and Upper Riemann Sums $L(P)$ and $U(P)$ for the function $f(x)=x^2$ on the interval $[0,1]$ using the partition $P={0,frac12,
frac34,1}$Given that $int_1^3 f(x)~dx=4$ and $int_1^5 f(x)~dx=7$,
find $int_3^5 f(x)~dx$.Given that $int_1^3 f(x)~dx=4$ and $int_1^3 g(x)~dx=2$,
find $int_1^3 3f(x)-g(x)~dx$.
definite-integrals riemann-sum
definite-integrals riemann-sum
edited Jul 8 '16 at 1:34
Frentos
2,5151622
2,5151622
asked Nov 29 '15 at 6:15
Atif ShahAtif Shah
12
12
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Just so this isn't hanging around unanswered forever.
Choose the minimum function value over each interval for $L(P)$, and the maximum for $U(P)$: $L(P)=0^2(frac12)+(frac12)^2(frac14)+(frac34)^2(frac14) = frac{13}{64}. U(P)=(frac12)^2(frac12)+(frac34)^2(frac14)+1^2(frac14)=frac{33}{64}$
$int_3^5 f(x)~dx = int_1^5f(x)~dx - int_1^3 f(x)~dx = 7 - 4 = 3$
$int_1^3 3f(x)-g(x)~dx =int_1^3 3f(x)-int_1^3g(x)~dx =3int_1^3 f(x)-int_1^3g(x)~dx = 3(4)-2=10$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1550993%2ffinding-the-lower-and-upper-riemann-sums%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Just so this isn't hanging around unanswered forever.
Choose the minimum function value over each interval for $L(P)$, and the maximum for $U(P)$: $L(P)=0^2(frac12)+(frac12)^2(frac14)+(frac34)^2(frac14) = frac{13}{64}. U(P)=(frac12)^2(frac12)+(frac34)^2(frac14)+1^2(frac14)=frac{33}{64}$
$int_3^5 f(x)~dx = int_1^5f(x)~dx - int_1^3 f(x)~dx = 7 - 4 = 3$
$int_1^3 3f(x)-g(x)~dx =int_1^3 3f(x)-int_1^3g(x)~dx =3int_1^3 f(x)-int_1^3g(x)~dx = 3(4)-2=10$.
add a comment |
Just so this isn't hanging around unanswered forever.
Choose the minimum function value over each interval for $L(P)$, and the maximum for $U(P)$: $L(P)=0^2(frac12)+(frac12)^2(frac14)+(frac34)^2(frac14) = frac{13}{64}. U(P)=(frac12)^2(frac12)+(frac34)^2(frac14)+1^2(frac14)=frac{33}{64}$
$int_3^5 f(x)~dx = int_1^5f(x)~dx - int_1^3 f(x)~dx = 7 - 4 = 3$
$int_1^3 3f(x)-g(x)~dx =int_1^3 3f(x)-int_1^3g(x)~dx =3int_1^3 f(x)-int_1^3g(x)~dx = 3(4)-2=10$.
add a comment |
Just so this isn't hanging around unanswered forever.
Choose the minimum function value over each interval for $L(P)$, and the maximum for $U(P)$: $L(P)=0^2(frac12)+(frac12)^2(frac14)+(frac34)^2(frac14) = frac{13}{64}. U(P)=(frac12)^2(frac12)+(frac34)^2(frac14)+1^2(frac14)=frac{33}{64}$
$int_3^5 f(x)~dx = int_1^5f(x)~dx - int_1^3 f(x)~dx = 7 - 4 = 3$
$int_1^3 3f(x)-g(x)~dx =int_1^3 3f(x)-int_1^3g(x)~dx =3int_1^3 f(x)-int_1^3g(x)~dx = 3(4)-2=10$.
Just so this isn't hanging around unanswered forever.
Choose the minimum function value over each interval for $L(P)$, and the maximum for $U(P)$: $L(P)=0^2(frac12)+(frac12)^2(frac14)+(frac34)^2(frac14) = frac{13}{64}. U(P)=(frac12)^2(frac12)+(frac34)^2(frac14)+1^2(frac14)=frac{33}{64}$
$int_3^5 f(x)~dx = int_1^5f(x)~dx - int_1^3 f(x)~dx = 7 - 4 = 3$
$int_1^3 3f(x)-g(x)~dx =int_1^3 3f(x)-int_1^3g(x)~dx =3int_1^3 f(x)-int_1^3g(x)~dx = 3(4)-2=10$.
answered Jul 8 '16 at 1:47
FrentosFrentos
2,5151622
2,5151622
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1550993%2ffinding-the-lower-and-upper-riemann-sums%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown