power series expansion in two variables
Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
$$
g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
$$
Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
$$
sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
$$
How can I expand $g$, so I can determine $q$.
real-analysis calculus multivariable-calculus power-series
add a comment |
Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
$$
g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
$$
Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
$$
sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
$$
How can I expand $g$, so I can determine $q$.
real-analysis calculus multivariable-calculus power-series
add a comment |
Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
$$
g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
$$
Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
$$
sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
$$
How can I expand $g$, so I can determine $q$.
real-analysis calculus multivariable-calculus power-series
Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
$$
g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
$$
Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
$$
sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
$$
How can I expand $g$, so I can determine $q$.
real-analysis calculus multivariable-calculus power-series
real-analysis calculus multivariable-calculus power-series
edited Jan 4 at 22:57
love_math
asked Jan 4 at 19:54
love_mathlove_math
1545
1545
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Since the constraints that you give result into $$|pq x_1 x_2|<1$$
then you can apply the geometric series to the denominator and the expansion is simply
$$
eqalign{
& left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
& = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
& = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
& = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
& quad quad quad Downarrow cr
& cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
$$
where $[P]$ denotes the Iverson bracket
$$
left[ P right] = left{ {begin{array}{*{20}c}
1 & {P = TRUE} \
0 & {P = FALSE} \
end{array} } right.
$$
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062033%2fpower-series-expansion-in-two-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Since the constraints that you give result into $$|pq x_1 x_2|<1$$
then you can apply the geometric series to the denominator and the expansion is simply
$$
eqalign{
& left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
& = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
& = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
& = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
& quad quad quad Downarrow cr
& cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
$$
where $[P]$ denotes the Iverson bracket
$$
left[ P right] = left{ {begin{array}{*{20}c}
1 & {P = TRUE} \
0 & {P = FALSE} \
end{array} } right.
$$
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
add a comment |
Since the constraints that you give result into $$|pq x_1 x_2|<1$$
then you can apply the geometric series to the denominator and the expansion is simply
$$
eqalign{
& left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
& = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
& = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
& = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
& quad quad quad Downarrow cr
& cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
$$
where $[P]$ denotes the Iverson bracket
$$
left[ P right] = left{ {begin{array}{*{20}c}
1 & {P = TRUE} \
0 & {P = FALSE} \
end{array} } right.
$$
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
add a comment |
Since the constraints that you give result into $$|pq x_1 x_2|<1$$
then you can apply the geometric series to the denominator and the expansion is simply
$$
eqalign{
& left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
& = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
& = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
& = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
& quad quad quad Downarrow cr
& cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
$$
where $[P]$ denotes the Iverson bracket
$$
left[ P right] = left{ {begin{array}{*{20}c}
1 & {P = TRUE} \
0 & {P = FALSE} \
end{array} } right.
$$
Since the constraints that you give result into $$|pq x_1 x_2|<1$$
then you can apply the geometric series to the denominator and the expansion is simply
$$
eqalign{
& left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
& = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
& = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
& = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
& quad quad quad Downarrow cr
& cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
$$
where $[P]$ denotes the Iverson bracket
$$
left[ P right] = left{ {begin{array}{*{20}c}
1 & {P = TRUE} \
0 & {P = FALSE} \
end{array} } right.
$$
edited Jan 5 at 1:33
answered Jan 4 at 20:26
G CabG Cab
18.1k31237
18.1k31237
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
add a comment |
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
– love_math
Jan 4 at 22:55
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
@love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
– G Cab
Jan 5 at 1:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062033%2fpower-series-expansion-in-two-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown