power series expansion in two variables












0














Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
$$
g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
$$

Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
$$
sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
$$

How can I expand $g$, so I can determine $q$.










share|cite|improve this question





























    0














    Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
    $$
    g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
    $$

    Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
    $$
    sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
    $$

    How can I expand $g$, so I can determine $q$.










    share|cite|improve this question



























      0












      0








      0


      1





      Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
      $$
      g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
      $$

      Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
      $$
      sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
      $$

      How can I expand $g$, so I can determine $q$.










      share|cite|improve this question















      Let $p,q in (0,1)$ sucht that $p + q = 1$. For $x_{1},x_{2} in (-1,1)$ define the function $g(x_{1},x_{2})$ by
      $$
      g(x_{1},x_{2}) = frac{qx_{1} + p^{2}x_{1}x_{2}}{1 - pqx_{1}x_{2}}.
      $$

      Now $g$ is the generating function of some probability distribution $q(n_{1},n_{2})$ for $n_{1},n_{2} geq 0$,i.e.
      $$
      sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2}).
      $$

      How can I expand $g$, so I can determine $q$.







      real-analysis calculus multivariable-calculus power-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 22:57







      love_math

















      asked Jan 4 at 19:54









      love_mathlove_math

      1545




      1545






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Since the constraints that you give result into $$|pq x_1 x_2|<1$$
          then you can apply the geometric series to the denominator and the expansion is simply
          $$
          eqalign{
          & left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
          & = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
          & = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
          & = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
          & quad quad quad Downarrow cr
          & cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
          $$



          where $[P]$ denotes the Iverson bracket
          $$
          left[ P right] = left{ {begin{array}{*{20}c}
          1 & {P = TRUE} \
          0 & {P = FALSE} \
          end{array} } right.
          $$






          share|cite|improve this answer























          • The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
            – love_math
            Jan 4 at 22:55












          • @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
            – G Cab
            Jan 5 at 1:35











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062033%2fpower-series-expansion-in-two-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Since the constraints that you give result into $$|pq x_1 x_2|<1$$
          then you can apply the geometric series to the denominator and the expansion is simply
          $$
          eqalign{
          & left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
          & = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
          & = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
          & = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
          & quad quad quad Downarrow cr
          & cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
          $$



          where $[P]$ denotes the Iverson bracket
          $$
          left[ P right] = left{ {begin{array}{*{20}c}
          1 & {P = TRUE} \
          0 & {P = FALSE} \
          end{array} } right.
          $$






          share|cite|improve this answer























          • The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
            – love_math
            Jan 4 at 22:55












          • @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
            – G Cab
            Jan 5 at 1:35
















          0














          Since the constraints that you give result into $$|pq x_1 x_2|<1$$
          then you can apply the geometric series to the denominator and the expansion is simply
          $$
          eqalign{
          & left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
          & = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
          & = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
          & = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
          & quad quad quad Downarrow cr
          & cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
          $$



          where $[P]$ denotes the Iverson bracket
          $$
          left[ P right] = left{ {begin{array}{*{20}c}
          1 & {P = TRUE} \
          0 & {P = FALSE} \
          end{array} } right.
          $$






          share|cite|improve this answer























          • The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
            – love_math
            Jan 4 at 22:55












          • @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
            – G Cab
            Jan 5 at 1:35














          0












          0








          0






          Since the constraints that you give result into $$|pq x_1 x_2|<1$$
          then you can apply the geometric series to the denominator and the expansion is simply
          $$
          eqalign{
          & left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
          & = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
          & = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
          & = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
          & quad quad quad Downarrow cr
          & cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
          $$



          where $[P]$ denotes the Iverson bracket
          $$
          left[ P right] = left{ {begin{array}{*{20}c}
          1 & {P = TRUE} \
          0 & {P = FALSE} \
          end{array} } right.
          $$






          share|cite|improve this answer














          Since the constraints that you give result into $$|pq x_1 x_2|<1$$
          then you can apply the geometric series to the denominator and the expansion is simply
          $$
          eqalign{
          & left( {q,x_1 + p^2 x_1 x_2 } right)sumlimits_{0 le k} {left( {pq,x_1 x_2 } right)^{,k} } = cr
          & = sumlimits_{0 le k} {p^{,k} q^{,k + 1} ,x_1 ^{,k + 1} x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_1 ^{,k + 1} x_2 ^{,k + 1} } = cr
          & = sumlimits_{0 le k} {left( {p^{,k} q^{,k + 1} ,x_2 ^{,k} + p^{,k + 2} q^{,k} ,x_2 ^{,k + 1} } right)x_1 ^{,k + 1} } = cr
          & = sumlimits_{0 le n_1 } {sumlimits_{0 le n_2 } {cleft( {n_1 ,n_2 } right)x_1 ^{,n_{,1} } x_2 ^{,n_{,2} } } } cr
          & quad quad quad Downarrow cr
          & cleft( {n_1 ,n_2 } right) = left[ {1 le n_1 } right]left( {left[ {n_2 = n_1 - 1} right]left( {p^{,n_1 - 1} q^{,n_1 } } right) + left[ {n_2 = n_1 } right]p^{,n_1 + 1} q^{,n_1 - 1} } right) cr}
          $$



          where $[P]$ denotes the Iverson bracket
          $$
          left[ P right] = left{ {begin{array}{*{20}c}
          1 & {P = TRUE} \
          0 & {P = FALSE} \
          end{array} } right.
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 5 at 1:33

























          answered Jan 4 at 20:26









          G CabG Cab

          18.1k31237




          18.1k31237












          • The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
            – love_math
            Jan 4 at 22:55












          • @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
            – G Cab
            Jan 5 at 1:35


















          • The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
            – love_math
            Jan 4 at 22:55












          • @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
            – G Cab
            Jan 5 at 1:35
















          The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
          – love_math
          Jan 4 at 22:55






          The above function is the generating function of some probability distribution $q(n_{1},n_{2})$, i.e. $sum_{n_{1},n_{2}=0}^{infty}q(n_{1},n_{2})x_{1}^{n_{1}}x_{2}^{n_{2}} = g(x_{1},x_{2})$. So I want to expand it to determine $q(n_{1},n_{2})$. I think your answer does not make sense in my special situation
          – love_math
          Jan 4 at 22:55














          @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
          – G Cab
          Jan 5 at 1:35




          @love_math: I expanded the sum , hope now is clear what the coefficients of the double expansion will be.
          – G Cab
          Jan 5 at 1:35


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062033%2fpower-series-expansion-in-two-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          1300-talet

          1300-talet

          Display a custom attribute below product name in the front-end Magento 1.9.3.8