Proof That $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx=int_{1}^{n}left{xright}f´(x)dx$












0














I am Reading the following notes: Ramanujan summation of divergent series by B Candelpergher (https://hal.univ-cotedazur.fr/hal-01150208v2/document). There, the author derives the Euler-MacLaurin summation formula in the beginning of the first chapter.
In one of the steps (on page 18 of the file) he states that
$$sum_{k=1}^{n-1}int_{k}^{k+1}[x]f´(x)dx=int_{1}^{n}xf´(x)dx+int_{1}^{n}left{xright}f´(x)dx$$
$left{xright}$ is the fractional part of $x$.



The first integral on the right side I understand, but the second one involving the fractional part of $x$, I can´t really see how it´s true. In other words, he is saying that



$$sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx=int_{1}^{n}left{xright}f´(x)dx$$
Can someone kindly show the proof or the intuition behind it?
Thank you in advance.










share|cite|improve this question





























    0














    I am Reading the following notes: Ramanujan summation of divergent series by B Candelpergher (https://hal.univ-cotedazur.fr/hal-01150208v2/document). There, the author derives the Euler-MacLaurin summation formula in the beginning of the first chapter.
    In one of the steps (on page 18 of the file) he states that
    $$sum_{k=1}^{n-1}int_{k}^{k+1}[x]f´(x)dx=int_{1}^{n}xf´(x)dx+int_{1}^{n}left{xright}f´(x)dx$$
    $left{xright}$ is the fractional part of $x$.



    The first integral on the right side I understand, but the second one involving the fractional part of $x$, I can´t really see how it´s true. In other words, he is saying that



    $$sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx=int_{1}^{n}left{xright}f´(x)dx$$
    Can someone kindly show the proof or the intuition behind it?
    Thank you in advance.










    share|cite|improve this question



























      0












      0








      0







      I am Reading the following notes: Ramanujan summation of divergent series by B Candelpergher (https://hal.univ-cotedazur.fr/hal-01150208v2/document). There, the author derives the Euler-MacLaurin summation formula in the beginning of the first chapter.
      In one of the steps (on page 18 of the file) he states that
      $$sum_{k=1}^{n-1}int_{k}^{k+1}[x]f´(x)dx=int_{1}^{n}xf´(x)dx+int_{1}^{n}left{xright}f´(x)dx$$
      $left{xright}$ is the fractional part of $x$.



      The first integral on the right side I understand, but the second one involving the fractional part of $x$, I can´t really see how it´s true. In other words, he is saying that



      $$sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx=int_{1}^{n}left{xright}f´(x)dx$$
      Can someone kindly show the proof or the intuition behind it?
      Thank you in advance.










      share|cite|improve this question















      I am Reading the following notes: Ramanujan summation of divergent series by B Candelpergher (https://hal.univ-cotedazur.fr/hal-01150208v2/document). There, the author derives the Euler-MacLaurin summation formula in the beginning of the first chapter.
      In one of the steps (on page 18 of the file) he states that
      $$sum_{k=1}^{n-1}int_{k}^{k+1}[x]f´(x)dx=int_{1}^{n}xf´(x)dx+int_{1}^{n}left{xright}f´(x)dx$$
      $left{xright}$ is the fractional part of $x$.



      The first integral on the right side I understand, but the second one involving the fractional part of $x$, I can´t really see how it´s true. In other words, he is saying that



      $$sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx=int_{1}^{n}left{xright}f´(x)dx$$
      Can someone kindly show the proof or the intuition behind it?
      Thank you in advance.







      integration summation euler-maclaurin ramanujan-summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 14:31







      Ricardo770

















      asked Jan 4 at 14:22









      Ricardo770Ricardo770

      8017




      8017






















          2 Answers
          2






          active

          oldest

          votes


















          1














          Just write out the sum: begin{align*}
          sum_{k=1}^{n-1} int_k^{k+1} text{whatever}, dx &= int_1^2 text{whatever}, dx + int_2^3 text{whatever}, dx + cdots + int_{n-1}^n text{whatever}, dx \
          &= int_1^n text{whatever}, dx.
          end{align*}






          share|cite|improve this answer

















          • 1




            ...where $text{whatever}={x}f´(x)$ :)
            – Wojowu
            Jan 4 at 14:38










          • @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
            – Ricardo770
            Jan 4 at 15:31












          • Why do you need to do any integrals?
            – Connor Harris
            Jan 4 at 16:22



















          0














          Ok, I got it!



          I took the reverse way to prove it.
          $$int_{1}^{n}left{xright}f´(x)dx= int_{1}^{n}(x-left[xright])f´(x)dx$$
          $$ =int_{1}^{n}x f´(x)dx -int_{1}^{n} left[xright]f´(x)dx$$
          $$ =int_{1}^{n}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
          $$=sum_{k=1}^{n-1} int_{k}^{k+1}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
          $$=sum_{k=1}^{n-1} int_{k}^{k+1}(x - left[xright])f´(x)dx$$
          $$=sum_{k=1}^{n-1} int_{k}^{k+1}left{xright}f´(x)dx$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061692%2fproof-that-sum-k-1n-1-int-kk1-left-x-right-f%25c2%25b4xdx-int-1n-l%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            Just write out the sum: begin{align*}
            sum_{k=1}^{n-1} int_k^{k+1} text{whatever}, dx &= int_1^2 text{whatever}, dx + int_2^3 text{whatever}, dx + cdots + int_{n-1}^n text{whatever}, dx \
            &= int_1^n text{whatever}, dx.
            end{align*}






            share|cite|improve this answer

















            • 1




              ...where $text{whatever}={x}f´(x)$ :)
              – Wojowu
              Jan 4 at 14:38










            • @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
              – Ricardo770
              Jan 4 at 15:31












            • Why do you need to do any integrals?
              – Connor Harris
              Jan 4 at 16:22
















            1














            Just write out the sum: begin{align*}
            sum_{k=1}^{n-1} int_k^{k+1} text{whatever}, dx &= int_1^2 text{whatever}, dx + int_2^3 text{whatever}, dx + cdots + int_{n-1}^n text{whatever}, dx \
            &= int_1^n text{whatever}, dx.
            end{align*}






            share|cite|improve this answer

















            • 1




              ...where $text{whatever}={x}f´(x)$ :)
              – Wojowu
              Jan 4 at 14:38










            • @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
              – Ricardo770
              Jan 4 at 15:31












            • Why do you need to do any integrals?
              – Connor Harris
              Jan 4 at 16:22














            1












            1








            1






            Just write out the sum: begin{align*}
            sum_{k=1}^{n-1} int_k^{k+1} text{whatever}, dx &= int_1^2 text{whatever}, dx + int_2^3 text{whatever}, dx + cdots + int_{n-1}^n text{whatever}, dx \
            &= int_1^n text{whatever}, dx.
            end{align*}






            share|cite|improve this answer












            Just write out the sum: begin{align*}
            sum_{k=1}^{n-1} int_k^{k+1} text{whatever}, dx &= int_1^2 text{whatever}, dx + int_2^3 text{whatever}, dx + cdots + int_{n-1}^n text{whatever}, dx \
            &= int_1^n text{whatever}, dx.
            end{align*}







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 4 at 14:34









            Connor HarrisConnor Harris

            4,350723




            4,350723








            • 1




              ...where $text{whatever}={x}f´(x)$ :)
              – Wojowu
              Jan 4 at 14:38










            • @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
              – Ricardo770
              Jan 4 at 15:31












            • Why do you need to do any integrals?
              – Connor Harris
              Jan 4 at 16:22














            • 1




              ...where $text{whatever}={x}f´(x)$ :)
              – Wojowu
              Jan 4 at 14:38










            • @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
              – Ricardo770
              Jan 4 at 15:31












            • Why do you need to do any integrals?
              – Connor Harris
              Jan 4 at 16:22








            1




            1




            ...where $text{whatever}={x}f´(x)$ :)
            – Wojowu
            Jan 4 at 14:38




            ...where $text{whatever}={x}f´(x)$ :)
            – Wojowu
            Jan 4 at 14:38












            @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
            – Ricardo770
            Jan 4 at 15:31






            @Connor Harris I tried what you say, but I get the following: $int_{n-1}^{n} left{xright}f´(x)dx=int_{n-1}^{n}(x-left[xright])f´(x)dx$ integrating the first integral by parts I get $int_{n-1}^{n}(x-left[xright])f´(x)dx=f(n)-int_{n-1}^{n}f(x)dx$. summing up all the integrals I got $sum_{k=1}^{n-1}int_{k}^{k+1}left{xright}f´(x)dx= sum_{k=1}^{n-1}f(k)-int_{1}^{n} f(x)dx$
            – Ricardo770
            Jan 4 at 15:31














            Why do you need to do any integrals?
            – Connor Harris
            Jan 4 at 16:22




            Why do you need to do any integrals?
            – Connor Harris
            Jan 4 at 16:22











            0














            Ok, I got it!



            I took the reverse way to prove it.
            $$int_{1}^{n}left{xright}f´(x)dx= int_{1}^{n}(x-left[xright])f´(x)dx$$
            $$ =int_{1}^{n}x f´(x)dx -int_{1}^{n} left[xright]f´(x)dx$$
            $$ =int_{1}^{n}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
            $$=sum_{k=1}^{n-1} int_{k}^{k+1}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
            $$=sum_{k=1}^{n-1} int_{k}^{k+1}(x - left[xright])f´(x)dx$$
            $$=sum_{k=1}^{n-1} int_{k}^{k+1}left{xright}f´(x)dx$$






            share|cite|improve this answer


























              0














              Ok, I got it!



              I took the reverse way to prove it.
              $$int_{1}^{n}left{xright}f´(x)dx= int_{1}^{n}(x-left[xright])f´(x)dx$$
              $$ =int_{1}^{n}x f´(x)dx -int_{1}^{n} left[xright]f´(x)dx$$
              $$ =int_{1}^{n}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
              $$=sum_{k=1}^{n-1} int_{k}^{k+1}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
              $$=sum_{k=1}^{n-1} int_{k}^{k+1}(x - left[xright])f´(x)dx$$
              $$=sum_{k=1}^{n-1} int_{k}^{k+1}left{xright}f´(x)dx$$






              share|cite|improve this answer
























                0












                0








                0






                Ok, I got it!



                I took the reverse way to prove it.
                $$int_{1}^{n}left{xright}f´(x)dx= int_{1}^{n}(x-left[xright])f´(x)dx$$
                $$ =int_{1}^{n}x f´(x)dx -int_{1}^{n} left[xright]f´(x)dx$$
                $$ =int_{1}^{n}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
                $$=sum_{k=1}^{n-1} int_{k}^{k+1}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
                $$=sum_{k=1}^{n-1} int_{k}^{k+1}(x - left[xright])f´(x)dx$$
                $$=sum_{k=1}^{n-1} int_{k}^{k+1}left{xright}f´(x)dx$$






                share|cite|improve this answer












                Ok, I got it!



                I took the reverse way to prove it.
                $$int_{1}^{n}left{xright}f´(x)dx= int_{1}^{n}(x-left[xright])f´(x)dx$$
                $$ =int_{1}^{n}x f´(x)dx -int_{1}^{n} left[xright]f´(x)dx$$
                $$ =int_{1}^{n}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
                $$=sum_{k=1}^{n-1} int_{k}^{k+1}x f´(x)dx -sum_{k=1}^{n-1}int_{k}^{k+1} left[xright]f´(x)dx$$
                $$=sum_{k=1}^{n-1} int_{k}^{k+1}(x - left[xright])f´(x)dx$$
                $$=sum_{k=1}^{n-1} int_{k}^{k+1}left{xright}f´(x)dx$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 4 at 16:33









                Ricardo770Ricardo770

                8017




                8017






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061692%2fproof-that-sum-k-1n-1-int-kk1-left-x-right-f%25c2%25b4xdx-int-1n-l%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8