Study the convergence of the series $sum_{n=1}^infty left( sqrt[17]{5+ frac1n} - sqrt[17]{5}right)^{a}q^n$...












0














I have a problem with this task, because I think the most important is idea to do convergence of the series
$$
sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
$$

but it is difficult for me because it is power $a$ and for $a=1$.



I can use claim about three series, but in this case I completely don't knew what can I do.










share|cite|improve this question





























    0














    I have a problem with this task, because I think the most important is idea to do convergence of the series
    $$
    sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
    $$

    but it is difficult for me because it is power $a$ and for $a=1$.



    I can use claim about three series, but in this case I completely don't knew what can I do.










    share|cite|improve this question



























      0












      0








      0


      1





      I have a problem with this task, because I think the most important is idea to do convergence of the series
      $$
      sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
      $$

      but it is difficult for me because it is power $a$ and for $a=1$.



      I can use claim about three series, but in this case I completely don't knew what can I do.










      share|cite|improve this question















      I have a problem with this task, because I think the most important is idea to do convergence of the series
      $$
      sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
      $$

      but it is difficult for me because it is power $a$ and for $a=1$.



      I can use claim about three series, but in this case I completely don't knew what can I do.







      real-analysis calculus sequences-and-series convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 17:18









      Yiorgos S. Smyrlis

      62.8k1383163




      62.8k1383163










      asked Jan 1 at 20:29









      MP3129MP3129

      916




      916






















          1 Answer
          1






          active

          oldest

          votes


















          5














          Hint. First show that
          $$
          lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
          $$

          and hence
          $$
          left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
          $$

          Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.






          share|cite|improve this answer





















          • Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
            – MP3129
            Jan 1 at 22:59








          • 1




            If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
            – JV.Stalker
            Jan 2 at 4:46










          • Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
            – MP3129
            Jan 2 at 10:32













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058843%2fstudy-the-convergence-of-the-series-sum-n-1-infty-left-sqrt175-frac%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5














          Hint. First show that
          $$
          lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
          $$

          and hence
          $$
          left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
          $$

          Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.






          share|cite|improve this answer





















          • Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
            – MP3129
            Jan 1 at 22:59








          • 1




            If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
            – JV.Stalker
            Jan 2 at 4:46










          • Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
            – MP3129
            Jan 2 at 10:32


















          5














          Hint. First show that
          $$
          lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
          $$

          and hence
          $$
          left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
          $$

          Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.






          share|cite|improve this answer





















          • Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
            – MP3129
            Jan 1 at 22:59








          • 1




            If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
            – JV.Stalker
            Jan 2 at 4:46










          • Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
            – MP3129
            Jan 2 at 10:32
















          5












          5








          5






          Hint. First show that
          $$
          lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
          $$

          and hence
          $$
          left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
          $$

          Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.






          share|cite|improve this answer












          Hint. First show that
          $$
          lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
          $$

          and hence
          $$
          left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
          $$

          Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 1 at 20:37









          Yiorgos S. SmyrlisYiorgos S. Smyrlis

          62.8k1383163




          62.8k1383163












          • Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
            – MP3129
            Jan 1 at 22:59








          • 1




            If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
            – JV.Stalker
            Jan 2 at 4:46










          • Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
            – MP3129
            Jan 2 at 10:32




















          • Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
            – MP3129
            Jan 1 at 22:59








          • 1




            If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
            – JV.Stalker
            Jan 2 at 4:46










          • Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
            – MP3129
            Jan 2 at 10:32


















          Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
          – MP3129
          Jan 1 at 22:59






          Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
          – MP3129
          Jan 1 at 22:59






          1




          1




          If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
          – JV.Stalker
          Jan 2 at 4:46




          If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
          – JV.Stalker
          Jan 2 at 4:46












          Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
          – MP3129
          Jan 2 at 10:32






          Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
          – MP3129
          Jan 2 at 10:32




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058843%2fstudy-the-convergence-of-the-series-sum-n-1-infty-left-sqrt175-frac%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          An IMO inspired problem

          Management

          Investment