Centralizer and Normalizer as Group Action












2














Could someone explain the following to me? I understand all the terms used in the text but have no intuition of what it's saying.



Dummit and Foote 3rd pg. 52



Dummit and Foote Pg. 52










share|cite|improve this question




















  • 1




    Remember that a group action of $G$ over $X$ is something of the form $Gtimes Xto X$ that satisfies certain properties? Well, for all $gin G,;Bin mathcal{P}(S)$, we define the action to be $gBg^{-1}inmathcal{P}(S)$. That is the action by conjugation.
    – Don Thousand
    2 days ago


















2














Could someone explain the following to me? I understand all the terms used in the text but have no intuition of what it's saying.



Dummit and Foote 3rd pg. 52



Dummit and Foote Pg. 52










share|cite|improve this question




















  • 1




    Remember that a group action of $G$ over $X$ is something of the form $Gtimes Xto X$ that satisfies certain properties? Well, for all $gin G,;Bin mathcal{P}(S)$, we define the action to be $gBg^{-1}inmathcal{P}(S)$. That is the action by conjugation.
    – Don Thousand
    2 days ago
















2












2








2







Could someone explain the following to me? I understand all the terms used in the text but have no intuition of what it's saying.



Dummit and Foote 3rd pg. 52



Dummit and Foote Pg. 52










share|cite|improve this question















Could someone explain the following to me? I understand all the terms used in the text but have no intuition of what it's saying.



Dummit and Foote 3rd pg. 52



Dummit and Foote Pg. 52







abstract-algebra group-theory group-actions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Shaun

8,810113680




8,810113680










asked 2 days ago









BrianH

637




637








  • 1




    Remember that a group action of $G$ over $X$ is something of the form $Gtimes Xto X$ that satisfies certain properties? Well, for all $gin G,;Bin mathcal{P}(S)$, we define the action to be $gBg^{-1}inmathcal{P}(S)$. That is the action by conjugation.
    – Don Thousand
    2 days ago
















  • 1




    Remember that a group action of $G$ over $X$ is something of the form $Gtimes Xto X$ that satisfies certain properties? Well, for all $gin G,;Bin mathcal{P}(S)$, we define the action to be $gBg^{-1}inmathcal{P}(S)$. That is the action by conjugation.
    – Don Thousand
    2 days ago










1




1




Remember that a group action of $G$ over $X$ is something of the form $Gtimes Xto X$ that satisfies certain properties? Well, for all $gin G,;Bin mathcal{P}(S)$, we define the action to be $gBg^{-1}inmathcal{P}(S)$. That is the action by conjugation.
– Don Thousand
2 days ago






Remember that a group action of $G$ over $X$ is something of the form $Gtimes Xto X$ that satisfies certain properties? Well, for all $gin G,;Bin mathcal{P}(S)$, we define the action to be $gBg^{-1}inmathcal{P}(S)$. That is the action by conjugation.
– Don Thousand
2 days ago












2 Answers
2






active

oldest

votes


















1














A (left) group action of a group $G$ on a set $X$ is a map $Gtimes Xto X$ satisfying:





  • $x^e = x$ for any $xin X$

  • $(x^g)^h = x^{hg}$


where the image of $(g,x)$ is denoted as $x^g$.



There are two important subgroups of $G$ that arise from a group action: the kernel and stabilizers. The kernel of the action is the set of all $gin G$ such that $x^g = x$ for all $xin X$. Given a subset $Ssubset X$, the stabilizer of $S$ denoted by $G_S$ is the set of all $gin G$ such that $s^gin S$ for all $sin S$.




Note that the kernel collects group elements that stabilize every individual element in $X$, and the stabilizer collects group elements that stabilize a particular set of elements in $X$. You should check for yourself that these are subgroups!




Let’s focus on the particular example where you give me any group $G$, we take $X$ to be $mathcal{P}(G)$, and given any $Ssubseteq G$ and $gin G$ define $S^g = gSg^{-1} = {gsg^{-1}: sin S}$. The stabilizer subgroup we defined above for this action on some set $Asubseteq G$ is the set of all $gin G$ such that $gAg^{-1} = A$ — which is exactly the normalizer subgroup $N_G(A)$! Thus we know that the normalizer is a subgroup because stabilizers are.



Now, take our group to be $N_G(A)$ and take $X$ to be $A$, with the same action as above. The kernel of this action is the set of all $gin N_G(A)$ such that $a^g = gag^{-1} = a$ for all $ain A$, i.e. the elements in $N_G(A)$ that commute with all elements in $A$. This is exactly the centralizer $C_G(A)$ of $A$ in $G$, and so it must be a subgroup because kernels are!



Thus $C_G(A)$ is a subgroup of $N_G(A)$ since it is the kernel of our second action, and $N_G(A)$ is a subgroup of $G$ because it is the stabilizer of $A$ in our first action. Thus $C_G(A) le N_G(A) le G$.



This is said in your text, but explain to yourself why $Z(G)$ is a subgroup of $G$ by think of $Z(G)$ as the kernel of a group action!



TL;DR If you understand kernels and stabilizers of group actions, many important objects pop out as having this form.






share|cite|improve this answer































    1














    It's saying that if you want to prove that centralizers, normalizers, and kernels are subgroups of G, it is enough to show that they are stabilizers or kernels of group actions. Then they exhibit a particular group action (conjugation) and show that $N_G(A)$ is the stabilizer of A and Z(G) is the kernel of this action. Thus those two sets are subgroups. Then they let $N_G(A)$ act only on A and show the $C_G(A)$ is the kernel of this second action and thus a subgroup.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060850%2fcentralizer-and-normalizer-as-group-action%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1














      A (left) group action of a group $G$ on a set $X$ is a map $Gtimes Xto X$ satisfying:





      • $x^e = x$ for any $xin X$

      • $(x^g)^h = x^{hg}$


      where the image of $(g,x)$ is denoted as $x^g$.



      There are two important subgroups of $G$ that arise from a group action: the kernel and stabilizers. The kernel of the action is the set of all $gin G$ such that $x^g = x$ for all $xin X$. Given a subset $Ssubset X$, the stabilizer of $S$ denoted by $G_S$ is the set of all $gin G$ such that $s^gin S$ for all $sin S$.




      Note that the kernel collects group elements that stabilize every individual element in $X$, and the stabilizer collects group elements that stabilize a particular set of elements in $X$. You should check for yourself that these are subgroups!




      Let’s focus on the particular example where you give me any group $G$, we take $X$ to be $mathcal{P}(G)$, and given any $Ssubseteq G$ and $gin G$ define $S^g = gSg^{-1} = {gsg^{-1}: sin S}$. The stabilizer subgroup we defined above for this action on some set $Asubseteq G$ is the set of all $gin G$ such that $gAg^{-1} = A$ — which is exactly the normalizer subgroup $N_G(A)$! Thus we know that the normalizer is a subgroup because stabilizers are.



      Now, take our group to be $N_G(A)$ and take $X$ to be $A$, with the same action as above. The kernel of this action is the set of all $gin N_G(A)$ such that $a^g = gag^{-1} = a$ for all $ain A$, i.e. the elements in $N_G(A)$ that commute with all elements in $A$. This is exactly the centralizer $C_G(A)$ of $A$ in $G$, and so it must be a subgroup because kernels are!



      Thus $C_G(A)$ is a subgroup of $N_G(A)$ since it is the kernel of our second action, and $N_G(A)$ is a subgroup of $G$ because it is the stabilizer of $A$ in our first action. Thus $C_G(A) le N_G(A) le G$.



      This is said in your text, but explain to yourself why $Z(G)$ is a subgroup of $G$ by think of $Z(G)$ as the kernel of a group action!



      TL;DR If you understand kernels and stabilizers of group actions, many important objects pop out as having this form.






      share|cite|improve this answer




























        1














        A (left) group action of a group $G$ on a set $X$ is a map $Gtimes Xto X$ satisfying:





        • $x^e = x$ for any $xin X$

        • $(x^g)^h = x^{hg}$


        where the image of $(g,x)$ is denoted as $x^g$.



        There are two important subgroups of $G$ that arise from a group action: the kernel and stabilizers. The kernel of the action is the set of all $gin G$ such that $x^g = x$ for all $xin X$. Given a subset $Ssubset X$, the stabilizer of $S$ denoted by $G_S$ is the set of all $gin G$ such that $s^gin S$ for all $sin S$.




        Note that the kernel collects group elements that stabilize every individual element in $X$, and the stabilizer collects group elements that stabilize a particular set of elements in $X$. You should check for yourself that these are subgroups!




        Let’s focus on the particular example where you give me any group $G$, we take $X$ to be $mathcal{P}(G)$, and given any $Ssubseteq G$ and $gin G$ define $S^g = gSg^{-1} = {gsg^{-1}: sin S}$. The stabilizer subgroup we defined above for this action on some set $Asubseteq G$ is the set of all $gin G$ such that $gAg^{-1} = A$ — which is exactly the normalizer subgroup $N_G(A)$! Thus we know that the normalizer is a subgroup because stabilizers are.



        Now, take our group to be $N_G(A)$ and take $X$ to be $A$, with the same action as above. The kernel of this action is the set of all $gin N_G(A)$ such that $a^g = gag^{-1} = a$ for all $ain A$, i.e. the elements in $N_G(A)$ that commute with all elements in $A$. This is exactly the centralizer $C_G(A)$ of $A$ in $G$, and so it must be a subgroup because kernels are!



        Thus $C_G(A)$ is a subgroup of $N_G(A)$ since it is the kernel of our second action, and $N_G(A)$ is a subgroup of $G$ because it is the stabilizer of $A$ in our first action. Thus $C_G(A) le N_G(A) le G$.



        This is said in your text, but explain to yourself why $Z(G)$ is a subgroup of $G$ by think of $Z(G)$ as the kernel of a group action!



        TL;DR If you understand kernels and stabilizers of group actions, many important objects pop out as having this form.






        share|cite|improve this answer


























          1












          1








          1






          A (left) group action of a group $G$ on a set $X$ is a map $Gtimes Xto X$ satisfying:





          • $x^e = x$ for any $xin X$

          • $(x^g)^h = x^{hg}$


          where the image of $(g,x)$ is denoted as $x^g$.



          There are two important subgroups of $G$ that arise from a group action: the kernel and stabilizers. The kernel of the action is the set of all $gin G$ such that $x^g = x$ for all $xin X$. Given a subset $Ssubset X$, the stabilizer of $S$ denoted by $G_S$ is the set of all $gin G$ such that $s^gin S$ for all $sin S$.




          Note that the kernel collects group elements that stabilize every individual element in $X$, and the stabilizer collects group elements that stabilize a particular set of elements in $X$. You should check for yourself that these are subgroups!




          Let’s focus on the particular example where you give me any group $G$, we take $X$ to be $mathcal{P}(G)$, and given any $Ssubseteq G$ and $gin G$ define $S^g = gSg^{-1} = {gsg^{-1}: sin S}$. The stabilizer subgroup we defined above for this action on some set $Asubseteq G$ is the set of all $gin G$ such that $gAg^{-1} = A$ — which is exactly the normalizer subgroup $N_G(A)$! Thus we know that the normalizer is a subgroup because stabilizers are.



          Now, take our group to be $N_G(A)$ and take $X$ to be $A$, with the same action as above. The kernel of this action is the set of all $gin N_G(A)$ such that $a^g = gag^{-1} = a$ for all $ain A$, i.e. the elements in $N_G(A)$ that commute with all elements in $A$. This is exactly the centralizer $C_G(A)$ of $A$ in $G$, and so it must be a subgroup because kernels are!



          Thus $C_G(A)$ is a subgroup of $N_G(A)$ since it is the kernel of our second action, and $N_G(A)$ is a subgroup of $G$ because it is the stabilizer of $A$ in our first action. Thus $C_G(A) le N_G(A) le G$.



          This is said in your text, but explain to yourself why $Z(G)$ is a subgroup of $G$ by think of $Z(G)$ as the kernel of a group action!



          TL;DR If you understand kernels and stabilizers of group actions, many important objects pop out as having this form.






          share|cite|improve this answer














          A (left) group action of a group $G$ on a set $X$ is a map $Gtimes Xto X$ satisfying:





          • $x^e = x$ for any $xin X$

          • $(x^g)^h = x^{hg}$


          where the image of $(g,x)$ is denoted as $x^g$.



          There are two important subgroups of $G$ that arise from a group action: the kernel and stabilizers. The kernel of the action is the set of all $gin G$ such that $x^g = x$ for all $xin X$. Given a subset $Ssubset X$, the stabilizer of $S$ denoted by $G_S$ is the set of all $gin G$ such that $s^gin S$ for all $sin S$.




          Note that the kernel collects group elements that stabilize every individual element in $X$, and the stabilizer collects group elements that stabilize a particular set of elements in $X$. You should check for yourself that these are subgroups!




          Let’s focus on the particular example where you give me any group $G$, we take $X$ to be $mathcal{P}(G)$, and given any $Ssubseteq G$ and $gin G$ define $S^g = gSg^{-1} = {gsg^{-1}: sin S}$. The stabilizer subgroup we defined above for this action on some set $Asubseteq G$ is the set of all $gin G$ such that $gAg^{-1} = A$ — which is exactly the normalizer subgroup $N_G(A)$! Thus we know that the normalizer is a subgroup because stabilizers are.



          Now, take our group to be $N_G(A)$ and take $X$ to be $A$, with the same action as above. The kernel of this action is the set of all $gin N_G(A)$ such that $a^g = gag^{-1} = a$ for all $ain A$, i.e. the elements in $N_G(A)$ that commute with all elements in $A$. This is exactly the centralizer $C_G(A)$ of $A$ in $G$, and so it must be a subgroup because kernels are!



          Thus $C_G(A)$ is a subgroup of $N_G(A)$ since it is the kernel of our second action, and $N_G(A)$ is a subgroup of $G$ because it is the stabilizer of $A$ in our first action. Thus $C_G(A) le N_G(A) le G$.



          This is said in your text, but explain to yourself why $Z(G)$ is a subgroup of $G$ by think of $Z(G)$ as the kernel of a group action!



          TL;DR If you understand kernels and stabilizers of group actions, many important objects pop out as having this form.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          Santana Afton

          2,5742629




          2,5742629























              1














              It's saying that if you want to prove that centralizers, normalizers, and kernels are subgroups of G, it is enough to show that they are stabilizers or kernels of group actions. Then they exhibit a particular group action (conjugation) and show that $N_G(A)$ is the stabilizer of A and Z(G) is the kernel of this action. Thus those two sets are subgroups. Then they let $N_G(A)$ act only on A and show the $C_G(A)$ is the kernel of this second action and thus a subgroup.






              share|cite|improve this answer


























                1














                It's saying that if you want to prove that centralizers, normalizers, and kernels are subgroups of G, it is enough to show that they are stabilizers or kernels of group actions. Then they exhibit a particular group action (conjugation) and show that $N_G(A)$ is the stabilizer of A and Z(G) is the kernel of this action. Thus those two sets are subgroups. Then they let $N_G(A)$ act only on A and show the $C_G(A)$ is the kernel of this second action and thus a subgroup.






                share|cite|improve this answer
























                  1












                  1








                  1






                  It's saying that if you want to prove that centralizers, normalizers, and kernels are subgroups of G, it is enough to show that they are stabilizers or kernels of group actions. Then they exhibit a particular group action (conjugation) and show that $N_G(A)$ is the stabilizer of A and Z(G) is the kernel of this action. Thus those two sets are subgroups. Then they let $N_G(A)$ act only on A and show the $C_G(A)$ is the kernel of this second action and thus a subgroup.






                  share|cite|improve this answer












                  It's saying that if you want to prove that centralizers, normalizers, and kernels are subgroups of G, it is enough to show that they are stabilizers or kernels of group actions. Then they exhibit a particular group action (conjugation) and show that $N_G(A)$ is the stabilizer of A and Z(G) is the kernel of this action. Thus those two sets are subgroups. Then they let $N_G(A)$ act only on A and show the $C_G(A)$ is the kernel of this second action and thus a subgroup.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 days ago









                  Joel Pereira

                  68819




                  68819






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060850%2fcentralizer-and-normalizer-as-group-action%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      1300-talet

                      1300-talet

                      Display a custom attribute below product name in the front-end Magento 1.9.3.8