Does convergence in $L^1_{text{loc}}(mathbb{R}^n)$ implies convergence in $mathcal{D}'(mathbb{R}^n)$?












0














Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.



If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?










share|cite|improve this question



























    0














    Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.



    If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?










    share|cite|improve this question

























      0












      0








      0







      Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.



      If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?










      share|cite|improve this question













      Every function $fin L^1_{text{loc}}(mathbb{R}^n)$ defines an element $Lambda_f$ of $mathcal{D}'(mathbb{R}^n)$.



      If $f_nto f$ in $L^1_{text{loc}}(mathbb{R}^n)$, does that mean that $Lambda_{f_n}to Lambda_f$ in $mathcal{D}'(mathbb{R}^n)$?







      distribution-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 4 at 12:12









      Gabriel RibeiroGabriel Ribeiro

      1,408422




      1,408422






















          1 Answer
          1






          active

          oldest

          votes


















          4














          Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$



          Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
          $$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
          as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061586%2fdoes-convergence-in-l1-textloc-mathbbrn-implies-convergence-in-ma%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4














            Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$



            Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
            $$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
            as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$






            share|cite|improve this answer


























              4














              Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$



              Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
              $$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
              as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$






              share|cite|improve this answer
























                4












                4








                4






                Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$



                Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
                $$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
                as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$






                share|cite|improve this answer












                Yes. The point is that convergence in $L^1_{mathrm{loc}}(mathbb R^n)$ implies convergence in each $L^1(Omega)$ for every bounded domain $Omega subset mathbb R^n,$ and hence weak $L^1$ convergence in $Omega.$ But $L^1(Omega)^* cong L^{infty}(Omega),$ which contains $C^{infty}_c(Omega).$



                Going along these lines, we can check this directly. Suppose $f_n rightarrow f$ in $L^1_{mathrm{loc}}(mathbb R^n)$ and let $varphi in C^{infty}_c(mathbb R^n).$ Pick a bounded domain $Omega subset mathbb R^n$ such that $operatorname{supp} varphi subset Omega$ and note that $f_n rightarrow f$ in $L^1(Omega).$ Then we get,
                $$ Lambda_{f_n}(varphi) - Lambda_f(varphi) = int_{mathbb R^n} (f_n - f)varphi ,mathrm{d}x = int_{Omega} (f_n - f)varphi ,mathrm{d}x leq lVert f_n - frVert_{L^1(Omega)} lVert varphi rVert_{L^{infty}_{Omega}} longrightarrow 0 $$
                as $n rightarrow infty.$ Since $varphi$ was arbitrary, $Lambda_{f_n} rightarrow Lambda_f$ in $mathcal{D}'(mathbb R^n).$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 4 at 12:36









                ktoiktoi

                2,3331616




                2,3331616






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061586%2fdoes-convergence-in-l1-textloc-mathbbrn-implies-convergence-in-ma%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8