Prove $Phi$ is a diffeomorphism
Let $d in mathbb N$.
Define $Phi:]0, infty[ times { x in mathbb R^{d-1}: |x|<1}to {y in mathbb R^d:y_{1}>0}, (r,x) mapsto r(sqrt{1-|x|^2},x)$
Show that $Phi$ is a diffeomorphism.
Ideas:
$1.$ Bijectivity:
$1.1$ Injectivity:
Let $x,y in mathbb R^d$ and $r,s in ]0, infty[$ whereby $x neq y$ or $r neq s$
if $x neq y$ is clear that $Phi(r,x)neq Phi(r,y)Rightarrow$ injectivity
So let $s neq r$ and $Phi(s,x)=s(sqrt{1-|x|^2},x) neqPhi(r,x)=r(sqrt{1-|x|^2},x) Rightarrow$ injectivity
$1.2$ Surjectivity: Let $z in {y in mathbb R^d:y_{1}>0}$ it is clear that there is an $r in ]0, infty[$ so that $r sqrt{1-|x|^2}=z_{1}Rightarrow$ surjectivity
$Rightarrow$ Bijectivity
On the issue of Differentiability of $Phi$ as well as Differentiability $Phi^{-1}$ I am lost, as this is the first time doing this...
Any ideas, corrections, tips?
real-analysis derivatives diffeomorphism
|
show 2 more comments
Let $d in mathbb N$.
Define $Phi:]0, infty[ times { x in mathbb R^{d-1}: |x|<1}to {y in mathbb R^d:y_{1}>0}, (r,x) mapsto r(sqrt{1-|x|^2},x)$
Show that $Phi$ is a diffeomorphism.
Ideas:
$1.$ Bijectivity:
$1.1$ Injectivity:
Let $x,y in mathbb R^d$ and $r,s in ]0, infty[$ whereby $x neq y$ or $r neq s$
if $x neq y$ is clear that $Phi(r,x)neq Phi(r,y)Rightarrow$ injectivity
So let $s neq r$ and $Phi(s,x)=s(sqrt{1-|x|^2},x) neqPhi(r,x)=r(sqrt{1-|x|^2},x) Rightarrow$ injectivity
$1.2$ Surjectivity: Let $z in {y in mathbb R^d:y_{1}>0}$ it is clear that there is an $r in ]0, infty[$ so that $r sqrt{1-|x|^2}=z_{1}Rightarrow$ surjectivity
$Rightarrow$ Bijectivity
On the issue of Differentiability of $Phi$ as well as Differentiability $Phi^{-1}$ I am lost, as this is the first time doing this...
Any ideas, corrections, tips?
real-analysis derivatives diffeomorphism
Your injectivity proof does not work. You also have to consider $rneq s$ and $xneq y$ while $Phi(r,x)= Phi(s,y)$. For the differentability you can use the fact that a function is differentiable iff each coordinate is differentiable. An easy way to check differentiabilty of the inverse function is to use the inverse function theorem. Otherwise you have to find the inverse and check by hand that it is differentiable.
– Severin Schraven
Jan 4 at 17:28
So $Phi$ is not injective?
– SABOY
Jan 4 at 18:30
It is, but your proof is not complete.
– Severin Schraven
Jan 4 at 23:15
Also your proof of surjectivity is not clear at all. If you change $r$, you also change the second coordinate.
– Severin Schraven
Jan 4 at 23:25
On the issue of injectivity where $ r neq s$ and $x neq y$ do you mean we generate a contradiction after assuming $Phi(r,x) = Phi(s,y)$? Because assuming $r(sqrt{1-|x|^2},x)=s(sqrt{1-|y|^2},y)$ that would mean $r(sqrt{1-|x|^2})=s(sqrt{1-|y|^2})$ and that $rx_{i}=sy_{i}, forall i in {1,...,n}$. I have no idea how to generate a contradiction from this
– SABOY
Jan 4 at 23:59
|
show 2 more comments
Let $d in mathbb N$.
Define $Phi:]0, infty[ times { x in mathbb R^{d-1}: |x|<1}to {y in mathbb R^d:y_{1}>0}, (r,x) mapsto r(sqrt{1-|x|^2},x)$
Show that $Phi$ is a diffeomorphism.
Ideas:
$1.$ Bijectivity:
$1.1$ Injectivity:
Let $x,y in mathbb R^d$ and $r,s in ]0, infty[$ whereby $x neq y$ or $r neq s$
if $x neq y$ is clear that $Phi(r,x)neq Phi(r,y)Rightarrow$ injectivity
So let $s neq r$ and $Phi(s,x)=s(sqrt{1-|x|^2},x) neqPhi(r,x)=r(sqrt{1-|x|^2},x) Rightarrow$ injectivity
$1.2$ Surjectivity: Let $z in {y in mathbb R^d:y_{1}>0}$ it is clear that there is an $r in ]0, infty[$ so that $r sqrt{1-|x|^2}=z_{1}Rightarrow$ surjectivity
$Rightarrow$ Bijectivity
On the issue of Differentiability of $Phi$ as well as Differentiability $Phi^{-1}$ I am lost, as this is the first time doing this...
Any ideas, corrections, tips?
real-analysis derivatives diffeomorphism
Let $d in mathbb N$.
Define $Phi:]0, infty[ times { x in mathbb R^{d-1}: |x|<1}to {y in mathbb R^d:y_{1}>0}, (r,x) mapsto r(sqrt{1-|x|^2},x)$
Show that $Phi$ is a diffeomorphism.
Ideas:
$1.$ Bijectivity:
$1.1$ Injectivity:
Let $x,y in mathbb R^d$ and $r,s in ]0, infty[$ whereby $x neq y$ or $r neq s$
if $x neq y$ is clear that $Phi(r,x)neq Phi(r,y)Rightarrow$ injectivity
So let $s neq r$ and $Phi(s,x)=s(sqrt{1-|x|^2},x) neqPhi(r,x)=r(sqrt{1-|x|^2},x) Rightarrow$ injectivity
$1.2$ Surjectivity: Let $z in {y in mathbb R^d:y_{1}>0}$ it is clear that there is an $r in ]0, infty[$ so that $r sqrt{1-|x|^2}=z_{1}Rightarrow$ surjectivity
$Rightarrow$ Bijectivity
On the issue of Differentiability of $Phi$ as well as Differentiability $Phi^{-1}$ I am lost, as this is the first time doing this...
Any ideas, corrections, tips?
real-analysis derivatives diffeomorphism
real-analysis derivatives diffeomorphism
asked Jan 4 at 11:57
SABOYSABOY
508311
508311
Your injectivity proof does not work. You also have to consider $rneq s$ and $xneq y$ while $Phi(r,x)= Phi(s,y)$. For the differentability you can use the fact that a function is differentiable iff each coordinate is differentiable. An easy way to check differentiabilty of the inverse function is to use the inverse function theorem. Otherwise you have to find the inverse and check by hand that it is differentiable.
– Severin Schraven
Jan 4 at 17:28
So $Phi$ is not injective?
– SABOY
Jan 4 at 18:30
It is, but your proof is not complete.
– Severin Schraven
Jan 4 at 23:15
Also your proof of surjectivity is not clear at all. If you change $r$, you also change the second coordinate.
– Severin Schraven
Jan 4 at 23:25
On the issue of injectivity where $ r neq s$ and $x neq y$ do you mean we generate a contradiction after assuming $Phi(r,x) = Phi(s,y)$? Because assuming $r(sqrt{1-|x|^2},x)=s(sqrt{1-|y|^2},y)$ that would mean $r(sqrt{1-|x|^2})=s(sqrt{1-|y|^2})$ and that $rx_{i}=sy_{i}, forall i in {1,...,n}$. I have no idea how to generate a contradiction from this
– SABOY
Jan 4 at 23:59
|
show 2 more comments
Your injectivity proof does not work. You also have to consider $rneq s$ and $xneq y$ while $Phi(r,x)= Phi(s,y)$. For the differentability you can use the fact that a function is differentiable iff each coordinate is differentiable. An easy way to check differentiabilty of the inverse function is to use the inverse function theorem. Otherwise you have to find the inverse and check by hand that it is differentiable.
– Severin Schraven
Jan 4 at 17:28
So $Phi$ is not injective?
– SABOY
Jan 4 at 18:30
It is, but your proof is not complete.
– Severin Schraven
Jan 4 at 23:15
Also your proof of surjectivity is not clear at all. If you change $r$, you also change the second coordinate.
– Severin Schraven
Jan 4 at 23:25
On the issue of injectivity where $ r neq s$ and $x neq y$ do you mean we generate a contradiction after assuming $Phi(r,x) = Phi(s,y)$? Because assuming $r(sqrt{1-|x|^2},x)=s(sqrt{1-|y|^2},y)$ that would mean $r(sqrt{1-|x|^2})=s(sqrt{1-|y|^2})$ and that $rx_{i}=sy_{i}, forall i in {1,...,n}$. I have no idea how to generate a contradiction from this
– SABOY
Jan 4 at 23:59
Your injectivity proof does not work. You also have to consider $rneq s$ and $xneq y$ while $Phi(r,x)= Phi(s,y)$. For the differentability you can use the fact that a function is differentiable iff each coordinate is differentiable. An easy way to check differentiabilty of the inverse function is to use the inverse function theorem. Otherwise you have to find the inverse and check by hand that it is differentiable.
– Severin Schraven
Jan 4 at 17:28
Your injectivity proof does not work. You also have to consider $rneq s$ and $xneq y$ while $Phi(r,x)= Phi(s,y)$. For the differentability you can use the fact that a function is differentiable iff each coordinate is differentiable. An easy way to check differentiabilty of the inverse function is to use the inverse function theorem. Otherwise you have to find the inverse and check by hand that it is differentiable.
– Severin Schraven
Jan 4 at 17:28
So $Phi$ is not injective?
– SABOY
Jan 4 at 18:30
So $Phi$ is not injective?
– SABOY
Jan 4 at 18:30
It is, but your proof is not complete.
– Severin Schraven
Jan 4 at 23:15
It is, but your proof is not complete.
– Severin Schraven
Jan 4 at 23:15
Also your proof of surjectivity is not clear at all. If you change $r$, you also change the second coordinate.
– Severin Schraven
Jan 4 at 23:25
Also your proof of surjectivity is not clear at all. If you change $r$, you also change the second coordinate.
– Severin Schraven
Jan 4 at 23:25
On the issue of injectivity where $ r neq s$ and $x neq y$ do you mean we generate a contradiction after assuming $Phi(r,x) = Phi(s,y)$? Because assuming $r(sqrt{1-|x|^2},x)=s(sqrt{1-|y|^2},y)$ that would mean $r(sqrt{1-|x|^2})=s(sqrt{1-|y|^2})$ and that $rx_{i}=sy_{i}, forall i in {1,...,n}$. I have no idea how to generate a contradiction from this
– SABOY
Jan 4 at 23:59
On the issue of injectivity where $ r neq s$ and $x neq y$ do you mean we generate a contradiction after assuming $Phi(r,x) = Phi(s,y)$? Because assuming $r(sqrt{1-|x|^2},x)=s(sqrt{1-|y|^2},y)$ that would mean $r(sqrt{1-|x|^2})=s(sqrt{1-|y|^2})$ and that $rx_{i}=sy_{i}, forall i in {1,...,n}$. I have no idea how to generate a contradiction from this
– SABOY
Jan 4 at 23:59
|
show 2 more comments
1 Answer
1
active
oldest
votes
Hint: The easiest way is to find the inverse function. For this we compute
$$ vert Phi(r,x) vert = r $$
as
$$ vert Phi(r,x) vert = vert r vert sqrt{(1-vert x vert^2)+ x_1^2 + dots + x_{d_1}^2} = vert r vert sqrt{1- vert x vert^2 + vert x vert^2} = vert r vert = r. $$
Hence, the inverse function is (for $y=(y_1, dots, y_d)$)
$$ Psi (y_1, dots, y_d) = left(vert y vert, frac{1}{vert y vert} y_2, dots, frac{1}{vert y vert} y_d right).$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061571%2fprove-phi-is-a-diffeomorphism%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint: The easiest way is to find the inverse function. For this we compute
$$ vert Phi(r,x) vert = r $$
as
$$ vert Phi(r,x) vert = vert r vert sqrt{(1-vert x vert^2)+ x_1^2 + dots + x_{d_1}^2} = vert r vert sqrt{1- vert x vert^2 + vert x vert^2} = vert r vert = r. $$
Hence, the inverse function is (for $y=(y_1, dots, y_d)$)
$$ Psi (y_1, dots, y_d) = left(vert y vert, frac{1}{vert y vert} y_2, dots, frac{1}{vert y vert} y_d right).$$
add a comment |
Hint: The easiest way is to find the inverse function. For this we compute
$$ vert Phi(r,x) vert = r $$
as
$$ vert Phi(r,x) vert = vert r vert sqrt{(1-vert x vert^2)+ x_1^2 + dots + x_{d_1}^2} = vert r vert sqrt{1- vert x vert^2 + vert x vert^2} = vert r vert = r. $$
Hence, the inverse function is (for $y=(y_1, dots, y_d)$)
$$ Psi (y_1, dots, y_d) = left(vert y vert, frac{1}{vert y vert} y_2, dots, frac{1}{vert y vert} y_d right).$$
add a comment |
Hint: The easiest way is to find the inverse function. For this we compute
$$ vert Phi(r,x) vert = r $$
as
$$ vert Phi(r,x) vert = vert r vert sqrt{(1-vert x vert^2)+ x_1^2 + dots + x_{d_1}^2} = vert r vert sqrt{1- vert x vert^2 + vert x vert^2} = vert r vert = r. $$
Hence, the inverse function is (for $y=(y_1, dots, y_d)$)
$$ Psi (y_1, dots, y_d) = left(vert y vert, frac{1}{vert y vert} y_2, dots, frac{1}{vert y vert} y_d right).$$
Hint: The easiest way is to find the inverse function. For this we compute
$$ vert Phi(r,x) vert = r $$
as
$$ vert Phi(r,x) vert = vert r vert sqrt{(1-vert x vert^2)+ x_1^2 + dots + x_{d_1}^2} = vert r vert sqrt{1- vert x vert^2 + vert x vert^2} = vert r vert = r. $$
Hence, the inverse function is (for $y=(y_1, dots, y_d)$)
$$ Psi (y_1, dots, y_d) = left(vert y vert, frac{1}{vert y vert} y_2, dots, frac{1}{vert y vert} y_d right).$$
answered Jan 5 at 0:59
Severin SchravenSeverin Schraven
5,8981934
5,8981934
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061571%2fprove-phi-is-a-diffeomorphism%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Your injectivity proof does not work. You also have to consider $rneq s$ and $xneq y$ while $Phi(r,x)= Phi(s,y)$. For the differentability you can use the fact that a function is differentiable iff each coordinate is differentiable. An easy way to check differentiabilty of the inverse function is to use the inverse function theorem. Otherwise you have to find the inverse and check by hand that it is differentiable.
– Severin Schraven
Jan 4 at 17:28
So $Phi$ is not injective?
– SABOY
Jan 4 at 18:30
It is, but your proof is not complete.
– Severin Schraven
Jan 4 at 23:15
Also your proof of surjectivity is not clear at all. If you change $r$, you also change the second coordinate.
– Severin Schraven
Jan 4 at 23:25
On the issue of injectivity where $ r neq s$ and $x neq y$ do you mean we generate a contradiction after assuming $Phi(r,x) = Phi(s,y)$? Because assuming $r(sqrt{1-|x|^2},x)=s(sqrt{1-|y|^2},y)$ that would mean $r(sqrt{1-|x|^2})=s(sqrt{1-|y|^2})$ and that $rx_{i}=sy_{i}, forall i in {1,...,n}$. I have no idea how to generate a contradiction from this
– SABOY
Jan 4 at 23:59