Exact function that generated the data












1














I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]









share|improve this question


















  • 2




    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    – Somos
    yesterday








  • 6




    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    – JimB
    yesterday






  • 2




    @JimB I think you should turn your comment into an answer.
    – Anton Antonov
    yesterday










  • @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    – JimB
    yesterday










  • Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    – MikeY
    yesterday


















1














I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]









share|improve this question


















  • 2




    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    – Somos
    yesterday








  • 6




    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    – JimB
    yesterday






  • 2




    @JimB I think you should turn your comment into an answer.
    – Anton Antonov
    yesterday










  • @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    – JimB
    yesterday










  • Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    – MikeY
    yesterday
















1












1








1







I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]









share|improve this question













I have "data" points as given below (e.g., for x-value = 1, the corresponding value of y is -23.110606616537147. (I apologize, it is rather large data array.) I need to find out the exact function that generated these values. I tried to guess by assuming some functional forms like below in Nonlinearfit, but no matter what I do, I do not get a perfect match between the actual data points and the fitted model. For some similar looking data, earlier I successfully guessed a simple functional form like c0*x^c1, and it was indeed a correct one. But this one gives me a headache. Any hints would be appreciated.



 data = {{1, -23.110606616537147`}, {2, -22.634559807032698`}, {3, 
-22.169391395259122`}, {4, -21.714928417099323`}, {5,
-21.27099702070698`}, {6, -20.837422557417913`}, {7,
-20.414029677397547`}, {8, -20.00064242987733`}, {9,
-19.59708436779354`}, {10, -19.20317865660647`}, {11,
-18.818748187036604`}, {12, -18.44361569142125`}, {13,
-18.077603863354696`}, {14, -17.72053548024153`}, {15,
-17.37223352835917`}, {16, -17.03252132999208`}, {17,
-16.701222672174307`}, {18, -16.37816193655099`}, {19,
-16.06316422984783`}, {20, -15.756055514421238`}, {21,
-15.45666273835037`}, {22, -15.164813964524406`}, {23,
-14.880338498176549`}, {24, -14.603067012321297`}, {25,
-14.332831670558821`}, {26, -14.069466246725915`}, {27,
-13.81280624089262`}, {28, -13.562688991228022`}, {29,
-13.318953781288066`}, {30, -13.081441942312981`}, {31,
-12.849996950157491`}, {32, -12.62446451651955`}, {33,
-12.40469267417549`}, {34, -12.190531855974797`}, {35,
-11.9818349673951`}, {36, -11.77845745250421`}, {37,
-11.580257353223834`}, {38, -11.387095361836874`}, {39,
-11.198834866724152`}, {40, -11.015341991362185`}, {41,
-10.83648562665372`}, {42, -10.662137456702512`}, {43,
-10.492171978179679`}, {44, -10.326466513462087`}, {45,
-10.164901217751611`}, {46, -10.00735908041173`}, {47,
-9.853725920778135`}, {48, -9.703890378719906`}, {49,
-9.557743900241988`}, {50, -9.415180718431747`}, {51,
-9.27609783005945`}, {52, -9.140394968148861`}, {53,
-9.00797457083459`}, {54, -8.878741746823117`}, {55,
-8.752604237770383`}, {56, -8.629472377884344`}, {57,
-8.509259051052561`}, {58, -8.391879645785975`}, {59,
-8.277252008260307`}, {60, -8.165296393723994`}, {61,
-8.05593541652889`}, {62, -7.949093999027778`}, {63,
-7.844699319567687`}, {64, -7.742680759794512`}, {65,
-7.642969851469594`}, {66, -7.545500222986023`}, {67,
-7.450207545755878`}, {68, -7.357029480628`}, {69,
-7.26590562448199`}, {70, -7.176777457127898`}, {71,
-7.089588288633837`}, {72, -7.00428320718695`}, {73,
-6.920809027583852`}, {74, -6.839114240434034`}, {75,
-6.759148962153092`}, {76, -6.680864885807705`}, {77,
-6.604215232869001`}, {78, -6.529154705921911`}, {79,
-6.455639442369452`}, {80, -6.383626969162678`}, {81,
-6.31307615858577`}, {82, -6.243947185110054`}, {83,
-6.176201483335542`}, {84, -6.109801707026194`}, {85,
-6.04471168924599`}, {86, -5.980896403591716`}, {87,
-5.918321926523271`}, {88, -5.856955400784149`}, {89,
-5.796764999899467`}, {90, -5.737719893744034`}, {91,
-5.67979021516316`}, {92, -5.622947027629922`}, {93,
-5.567162293924735`}, {94, -5.51240884581518`}, {95,
-5.4586603547111325`}, {96, -5.405891303287587`}, {97,
-5.354076958038671`}, {98, -5.303193342744227`}, {99,
-5.253217212836056`}, {100, -5.204126030621797`}, {101,
-5.155897941359824`}, {102, -5.108511750155478`}, {103,
-5.061946899645364`}, {104, -5.016183448466045`}, {105,
-4.971202050471683`}, {106, -4.926983934661999`}, {107,
-4.883510885836728`}, {108, -4.84076522592182`}, {109,
-4.798729795945647`}, {110, -4.757387938669721`}, {111,
-4.716723481825754`}, {112, -4.67672072193916`}, {113,
-4.637364408757703`}, {114, -4.59863973019463`}, {115,
-4.560532297842467`}, {116, -4.523028132982823`}, {117,
-4.486113653103491`}, {118, -4.449775658895453`}, {119,
-4.41400132171649`}, {120, -4.378778171492242`}, {121,
-4.344094085051662`}, {122, -4.309937274899812`}, {123,
-4.276296278348539`}, {124, -4.243159947070432`}, {125,
-4.210517437006852`}, {126, -4.178358198625626`}, {127,
-4.146671967559926`}, {128, -4.1154487555198624`}, {129,
-4.0846788415867845`}, {130, -4.054352763762313`}, {131,
-4.0244613108513585`}, {132, -3.9949955146174574`}, {133,
-3.96594664218276`}, {134, -3.9373061887660405`}, {135,
-3.909065870596173`}, {136, -3.8812176180973057`}, {137,
-3.8537535693628917`}, {138, -3.8266660637358667`}, {139,
-3.7999476358072934`}, {140, -3.7735910093074665`}, {141,
-3.74758909160381`}, {142, -3.7219349680465865`}, {143,
-3.6966218966629736`}, {144, -3.6716433030615776`}, {145,
-3.6469927753955544`}, {146, -3.6226640595680135`}, {147,
-3.5986510546565684`}, {148, -3.574947808325067`}, {149,
-3.5515485125124444`}, {150, -3.5284474993200767`}, {151,
-3.5056392368240044`}, {152, -3.483118325276561`}, {153,
-3.460879493260421`}, {154, -3.438917593975345`}, {155,
-3.4172276017590093`}, {156, -3.3958046086882554`}, {157,
-3.374643821160908`}, {158, -3.353740556736291`}, {159,
-3.3330902410178322`}, {160, -3.312688404715038`}, {161,
-3.2925306805915473`}, {162, -3.272612800745575`}, {163,
-3.2529305938873545`}, {164, -3.233479982647259`}, {165,
-3.214256981045697`}, {166, -3.1952576919922233`}, {167,
-3.1764783049446503`}, {168, -3.1579150935109284`}, {169,
-3.139564413239762`}, {170, -3.121422699346016`}, {171,
-3.103486464815515`}, {172, -3.085752298105903`}, {173,
-3.06821686127576`}, {174, -3.050876888100025`}, {175,
-3.0337291820666468`}, {176, -3.0167706147250413`}, {177,
-2.9999981237621083`}, {178, -2.983408711517164`}, {179,
-2.966999443043029`}, {180, -2.950767444701468`}, {181,
-2.934709902599512`}, {182, -2.9188240610407234`}, {183,
-2.9031072210435833`}, {184, -2.887556738792709`}, {185,
-2.872170024766015`}, {186, -2.8569445415004098`}, {187,
-2.8418778032806804`}, {188, -2.826967374155622`}, {189,
-2.812210867058904`}, {190, -2.7976059425004576`}, {191,
-2.7831503072851684`}, {192, -2.7688417138905446`}, {193,
-2.754677958553913`}, {194, -2.7406568810289835`}, {195,
-2.726776362987283`}, {196, -2.713034327288908`}, {197,
-2.6994287369175294`}, {198, -2.685957594145642`}, {199,
-2.6726189392571844`}, {200, -2.659410850234966`}, {201,
-2.6463314412821766`}, {202, -2.6333788625233256`}, {203,
-2.620551298593924`}, {204, -2.607846968355005`}, {205,
-2.5952641239009546`}, {206, -2.582801049737661`}, {207,
-2.5704560622673993`}, {208, -2.558227508614336`}, {209,
-2.5461137664044258`}, {210, -2.534113242995652`}, {211,
-2.522224374603854`}, {212, -2.5104456257717658`}, {213,
-2.498775488706279`}, {214, -2.4872124825245163`}, {215,
-2.4757551535422944`}, {216, -2.464402073172508`}, {217,
-2.453151838443181`}, {218, -2.442003071243755`}, {219,
-2.4309544177318334`}, {220, -2.4200045476642322`}, {221,
-2.409152153992214`}, {222, -2.3983959524956675`}, {223,
-2.387734681289511`}, {224, -2.377167099889028`}, {225,
-2.366691989346202`}, {226, -2.3563081515904245`}, {227,
-2.3460144087642822`}, {228, -2.3358096032830167`}, {229,
-2.325692596783091`}, {230, -2.315662270438909`}, {231,
-2.3057175233907956`}, {232, -2.29585727442902`}, {233,
-2.286080459414958`}, {234, -2.2763860317434053`}, {235,
-2.266772962762401`}, {236, -2.2572402399963534`}, {237,
-2.247786868076797`}, {238, -2.2384118676807003`}, {239,
-2.229114275276284`}, {240, -2.219893143305838`}, {241,
-2.2107475390725484`}, {242, -2.201676544892208`}, {243,
-2.1926792581970433`}, {244, -2.1837547901839267`}, {245,
-2.174902266691395`}, {246, -2.1661208267976306`}, {247,
-2.157409624059163`}, {248, -2.1487678244320083`}, {249,
-2.140194607212623`}, {250, -2.1316891648369265`}, {251,
-2.1232507019591473`}, {252, -2.1148784350248993`}, {253,
-2.106571593566107`}, {254, -2.098329418416463`}, {255,
-2.090151161998165`}, {256, -2.0820360882444153`}, {257,
-2.073983472006926`}, {258, -2.065992599822153`}, {259,
-2.058062768049216`}, {260, -2.050193284216243`}, {261,
-2.0423834658368696`}, {262, -2.0346326410997926`}, {263,
-2.0269401485288645`}, {264, -2.0193053338702636`}, {265,
-2.0117275563473562`}, {266, -2.004206182315287`}, {267,
-1.9967405874795818`}, {268, -1.9893301568484185`}, {269,
-1.9819742855282303`}, {270, -1.9746723747402435`}, {271,
-1.9674238375778639`}, {272, -1.9602280932974574`}, {273,
-1.9530845707790225`}, {274, -1.9459927058478763`}, {275,
-1.9389519432101352`}, {276, -1.931961735476371`}, {277,
-1.925021542799568`}, {278, -1.9181308327120814`}, {279,
-1.9112890808085006`}, {280, -1.9044957695265645`}, {281,
-1.8977503886127203`}, {282, -1.891052435105641`}, {283,
-1.884401412885268`}, {284, -1.8777968326794983`}, {285,
-1.8712382123452354`}, {286, -1.8647250755056284`}, {287,
-1.8582569532551345`}, {288, -1.8518333819478199`}, {289,
-1.8454539057598962`}, {290, -1.8391180735418549`}, {291,
-1.832825441675692`}, {292, -1.8265755709541789`}, {293,
-1.820368029301432`}, {294, -1.814202389691782`}, {295,
-1.8080782314221209`}, {296, -1.8019951386958164`}, {297,
-1.795952701852902`}, {298, -1.789950516054215`}, {299,
-1.7839881824124155`}, {300, -1.7780653067123846`}}

NonlinearModelFit[data,
c0 + c1*x^c2 + c3*x^c4, {c0, c1, c2, c3, c4}, x]






fitting






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked yesterday









AlexAlex

132




132








  • 2




    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    – Somos
    yesterday








  • 6




    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    – JimB
    yesterday






  • 2




    @JimB I think you should turn your comment into an answer.
    – Anton Antonov
    yesterday










  • @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    – JimB
    yesterday










  • Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    – MikeY
    yesterday
















  • 2




    Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
    – Somos
    yesterday








  • 6




    ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
    – JimB
    yesterday






  • 2




    @JimB I think you should turn your comment into an answer.
    – Anton Antonov
    yesterday










  • @AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
    – JimB
    yesterday










  • Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
    – MikeY
    yesterday










2




2




Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
– Somos
yesterday






Where did you get this list of 300 numbers? Why do you need "the exact function"? Given any finite collection of numbers there is an exact polynomial interpolation function. What form do you expect for the function? There is nothing specific to Mathematica here that I can see.
– Somos
yesterday






6




6




ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
– JimB
yesterday




ff = FindFormula[data, x]; Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large] will reproduce the data pretty well but I find it hard to believe that you'll be successful to find the "exact" formula used to generate the data.
– JimB
yesterday




2




2




@JimB I think you should turn your comment into an answer.
– Anton Antonov
yesterday




@JimB I think you should turn your comment into an answer.
– Anton Antonov
yesterday












@AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
– JimB
yesterday




@AntonAntonov But I already feel dirty enough even using FindFormula in a comment. Plus, @MikeY's formula uses far fewer parameters and results in a much better fit.
– JimB
yesterday












Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
– MikeY
yesterday






Yeah, but I learned something from your method! Thanks for posting it. I'd have made it an answer.
– MikeY
yesterday












3 Answers
3






active

oldest

votes


















4














In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


$
frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
$



 nlf["AdjustedRSquared"]
nlf["FitResiduals"] // MinMax



0.999999



{-0.0134303, 0.014954}




 Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


enter image description here






share|improve this answer































    2














    The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



    (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



    FindFormula



    ff = FindFormula[data, x];
    Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


    enter image description here



    ff


    enter image description here



    Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
    (* {3.43479*10^-7, 0.00344725, 1.} *)


    Quantile regression



    Load the QRMon package:



    Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


    First how the formulas found with QRMon package look like:



    qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
    qFunc[x] // PiecewiseExpand


    enter image description here



    Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



    aErrors = Association@Flatten@
    Table[
    {nknots, norder} ->
    QRMonUnit[data]⟹
    QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
    QRMonErrors⟹
    (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
    QRMonTakeValue,
    {nknots, 3, 12, 2}, {norder, 1, 5}];

    GridTableForm[
    SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
    TableHeadings -> {"numbernof knots", "interpolationnorder",
    "max absolutenrelative error"}]


    enter image description here






    share|improve this answer





















    • Sorry, I can only give you a +1.
      – JimB
      18 hours ago










    • @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
      – Anton Antonov
      18 hours ago










    • And you (and I) might have greatly exaggerated my level of purity.
      – JimB
      18 hours ago



















    1














    It also resembles the error function:



    fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


    enter image description here






    share|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188958%2fexact-function-that-generated-the-data%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4














      In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



      nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


      $
      frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
      $



       nlf["AdjustedRSquared"]
      nlf["FitResiduals"] // MinMax



      0.999999



      {-0.0134303, 0.014954}




       Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


      enter image description here






      share|improve this answer




























        4














        In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



        nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


        $
        frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
        $



         nlf["AdjustedRSquared"]
        nlf["FitResiduals"] // MinMax



        0.999999



        {-0.0134303, 0.014954}




         Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


        enter image description here






        share|improve this answer


























          4












          4








          4






          In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



          nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


          $
          frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
          $



           nlf["AdjustedRSquared"]
          nlf["FitResiduals"] // MinMax



          0.999999



          {-0.0134303, 0.014954}




           Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


          enter image description here






          share|improve this answer














          In the absence of additional information about the form, and just eyeballing the shape makes it look like a rational polynomial-ish thing, I vote for...



          nlf = NonlinearModelFit[data, (c0 + c1 x + c2 x^2)/(c3 + c4 x + x^c5), {c0, c1, c2, c3, c4, c5}, x];


          $
          frac{-2.10241 x^2-1735.16 x-43612.1}{x^{2.25431}+116.08 x+1843.92}
          $



           nlf["AdjustedRSquared"]
          nlf["FitResiduals"] // MinMax



          0.999999



          {-0.0134303, 0.014954}




           Plot[nlf[x], {x, 1, 300}, Epilog -> Point[data]]


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 18 hours ago

























          answered yesterday









          MikeYMikeY

          2,317411




          2,317411























              2














              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here






              share|improve this answer





















              • Sorry, I can only give you a +1.
                – JimB
                18 hours ago










              • @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                – Anton Antonov
                18 hours ago










              • And you (and I) might have greatly exaggerated my level of purity.
                – JimB
                18 hours ago
















              2














              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here






              share|improve this answer





















              • Sorry, I can only give you a +1.
                – JimB
                18 hours ago










              • @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                – Anton Antonov
                18 hours ago










              • And you (and I) might have greatly exaggerated my level of purity.
                – JimB
                18 hours ago














              2












              2








              2






              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here






              share|improve this answer












              The first part of the answer uses FindFormula and the results are compared with the results of the second part that uses Quantile Regression with B-splines. The two approaches produce very similar formulas (piecewise polynomials.) The errors with Quantile Regression are much smaller.



              (The first part of this answer is a comment made by @JimB, who because of some purity considerations, also implied here, refuses to make it an answer.)



              FindFormula



              ff = FindFormula[data, x];
              Show[ListPlot[data], Plot[ff, {x, 0, 300}, PlotStyle -> Red], ImageSize -> Large]


              enter image description here



              ff


              enter image description here



              Through[{Min, Mean, Max}[Abs[((ff /. x -> #[[1]]) - #[[2]])/#[[2]]] & /@ data]]
              (* {3.43479*10^-7, 0.00344725, 1.} *)


              Quantile regression



              Load the QRMon package:



              Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]


              First how the formulas found with QRMon package look like:



              qFunc = (QRMonUnit[data] ⟹ QRMonQuantileRegression[2, 0.5, InterpolationOrder -> 5] ⟹ QRMonTakeRegressionFunctions)[0.5];
              qFunc[x] // PiecewiseExpand


              enter image description here



              Here is a bulk computation with max absolute relative errors for different combinations of B-spline basis number of knots and order:



              aErrors = Association@Flatten@
              Table[
              {nknots, norder} ->
              QRMonUnit[data]⟹
              QRMonQuantileRegression[nknots, 0.5, InterpolationOrder -> norder]⟹
              QRMonErrors⟹
              (QRMonUnit[First[Values[#1]][[All, 2]], #2] &)⟹
              QRMonTakeValue,
              {nknots, 3, 12, 2}, {norder, 1, 5}];

              GridTableForm[
              SortBy[Flatten@*List @@@ Normal[Max /@ Abs@aErrors], Last],
              TableHeadings -> {"numbernof knots", "interpolationnorder",
              "max absolutenrelative error"}]


              enter image description here







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered 19 hours ago









              Anton AntonovAnton Antonov

              22.7k164111




              22.7k164111












              • Sorry, I can only give you a +1.
                – JimB
                18 hours ago










              • @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                – Anton Antonov
                18 hours ago










              • And you (and I) might have greatly exaggerated my level of purity.
                – JimB
                18 hours ago


















              • Sorry, I can only give you a +1.
                – JimB
                18 hours ago










              • @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
                – Anton Antonov
                18 hours ago










              • And you (and I) might have greatly exaggerated my level of purity.
                – JimB
                18 hours ago
















              Sorry, I can only give you a +1.
              – JimB
              18 hours ago




              Sorry, I can only give you a +1.
              – JimB
              18 hours ago












              @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
              – Anton Antonov
              18 hours ago




              @JimB Thanks! I mostly posted this answer in order to proclaim the similarities of the two approaches FindFormula and Quantile Regression...
              – Anton Antonov
              18 hours ago












              And you (and I) might have greatly exaggerated my level of purity.
              – JimB
              18 hours ago




              And you (and I) might have greatly exaggerated my level of purity.
              – JimB
              18 hours ago











              1














              It also resembles the error function:



              fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


              enter image description here






              share|improve this answer


























                1














                It also resembles the error function:



                fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


                enter image description here






                share|improve this answer
























                  1












                  1








                  1






                  It also resembles the error function:



                  fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


                  enter image description here






                  share|improve this answer












                  It also resembles the error function:



                  fit = NonlinearModelFit[data, a Erf[(x - x0)/(Sqrt[2] s)] + y0, {a, x0, y0, s}, x]


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered yesterday









                  David KeithDavid Keith

                  956213




                  956213






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188958%2fexact-function-that-generated-the-data%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      1300-talet

                      1300-talet

                      Display a custom attribute below product name in the front-end Magento 1.9.3.8