I can't solve a cyclic redundancy check












0














In my book there's an example of how to do a cyclic redundancy check with regular numbers. I've tried to complete the exercise with binary numbers but without success. In the book the given polynomial equals $x^{14}+x^{12}+x^8+x^7+x^5$ and the used generator polynomial is $x^5+x^4+x^2+1$. The result of the question was $x^3+x^2+x$.



The professor included in his powerpoint that 010100011010000 is the starting message en that the remainder in binary should be 01110. The rest was up to us.



I've practiced with different binary messages and I could complete those but I got stuck on this one.



Here's what i've tried so far. When I try to convert the given polynomial into a message it has one zero more. Also my remainder is 00001 and not 01110. I wrote a program to do the calculations for me to see if i made any errors and looked online for a tool that could do it for me but both give me the same result:00001.
Whatever I do I can't seem to get the right result.
Thanks in advance guys.










share|cite|improve this question









New contributor




Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    0














    In my book there's an example of how to do a cyclic redundancy check with regular numbers. I've tried to complete the exercise with binary numbers but without success. In the book the given polynomial equals $x^{14}+x^{12}+x^8+x^7+x^5$ and the used generator polynomial is $x^5+x^4+x^2+1$. The result of the question was $x^3+x^2+x$.



    The professor included in his powerpoint that 010100011010000 is the starting message en that the remainder in binary should be 01110. The rest was up to us.



    I've practiced with different binary messages and I could complete those but I got stuck on this one.



    Here's what i've tried so far. When I try to convert the given polynomial into a message it has one zero more. Also my remainder is 00001 and not 01110. I wrote a program to do the calculations for me to see if i made any errors and looked online for a tool that could do it for me but both give me the same result:00001.
    Whatever I do I can't seem to get the right result.
    Thanks in advance guys.










    share|cite|improve this question









    New contributor




    Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      0












      0








      0







      In my book there's an example of how to do a cyclic redundancy check with regular numbers. I've tried to complete the exercise with binary numbers but without success. In the book the given polynomial equals $x^{14}+x^{12}+x^8+x^7+x^5$ and the used generator polynomial is $x^5+x^4+x^2+1$. The result of the question was $x^3+x^2+x$.



      The professor included in his powerpoint that 010100011010000 is the starting message en that the remainder in binary should be 01110. The rest was up to us.



      I've practiced with different binary messages and I could complete those but I got stuck on this one.



      Here's what i've tried so far. When I try to convert the given polynomial into a message it has one zero more. Also my remainder is 00001 and not 01110. I wrote a program to do the calculations for me to see if i made any errors and looked online for a tool that could do it for me but both give me the same result:00001.
      Whatever I do I can't seem to get the right result.
      Thanks in advance guys.










      share|cite|improve this question









      New contributor




      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      In my book there's an example of how to do a cyclic redundancy check with regular numbers. I've tried to complete the exercise with binary numbers but without success. In the book the given polynomial equals $x^{14}+x^{12}+x^8+x^7+x^5$ and the used generator polynomial is $x^5+x^4+x^2+1$. The result of the question was $x^3+x^2+x$.



      The professor included in his powerpoint that 010100011010000 is the starting message en that the remainder in binary should be 01110. The rest was up to us.



      I've practiced with different binary messages and I could complete those but I got stuck on this one.



      Here's what i've tried so far. When I try to convert the given polynomial into a message it has one zero more. Also my remainder is 00001 and not 01110. I wrote a program to do the calculations for me to see if i made any errors and looked online for a tool that could do it for me but both give me the same result:00001.
      Whatever I do I can't seem to get the right result.
      Thanks in advance guys.







      coding-theory






      share|cite|improve this question









      New contributor




      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Wuestenfux

      3,6861411




      3,6861411






      New contributor




      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Jan 3 at 22:53









      Zwarte Kop

      11




      11




      New contributor




      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Zwarte Kop is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Well, the polynomial division of $x^{14}+x^{12}+x^8+x^7+x^5$ by $x^5+x^4+x^2+1$ yields the remainder $x^3+x^2+x$ where the polynomials are defined over $GF(2)$.
          I've checked this using SINGULAR:




          ring r = 2, (x), lp;



          poly f = x14+x12+x8+x7+x5;



          ideal i = x5+x4+x2+1;



          reduce(f,i);




          x3+x2+x






          share|cite|improve this answer





















          • Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
            – Zwarte Kop
            2 days ago












          • What its the example?
            – Wuestenfux
            2 days ago










          • Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
            – Zwarte Kop
            2 days ago












          • I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
            – Zwarte Kop
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Zwarte Kop is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061116%2fi-cant-solve-a-cyclic-redundancy-check%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Well, the polynomial division of $x^{14}+x^{12}+x^8+x^7+x^5$ by $x^5+x^4+x^2+1$ yields the remainder $x^3+x^2+x$ where the polynomials are defined over $GF(2)$.
          I've checked this using SINGULAR:




          ring r = 2, (x), lp;



          poly f = x14+x12+x8+x7+x5;



          ideal i = x5+x4+x2+1;



          reduce(f,i);




          x3+x2+x






          share|cite|improve this answer





















          • Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
            – Zwarte Kop
            2 days ago












          • What its the example?
            – Wuestenfux
            2 days ago










          • Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
            – Zwarte Kop
            2 days ago












          • I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
            – Zwarte Kop
            yesterday
















          0














          Well, the polynomial division of $x^{14}+x^{12}+x^8+x^7+x^5$ by $x^5+x^4+x^2+1$ yields the remainder $x^3+x^2+x$ where the polynomials are defined over $GF(2)$.
          I've checked this using SINGULAR:




          ring r = 2, (x), lp;



          poly f = x14+x12+x8+x7+x5;



          ideal i = x5+x4+x2+1;



          reduce(f,i);




          x3+x2+x






          share|cite|improve this answer





















          • Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
            – Zwarte Kop
            2 days ago












          • What its the example?
            – Wuestenfux
            2 days ago










          • Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
            – Zwarte Kop
            2 days ago












          • I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
            – Zwarte Kop
            yesterday














          0












          0








          0






          Well, the polynomial division of $x^{14}+x^{12}+x^8+x^7+x^5$ by $x^5+x^4+x^2+1$ yields the remainder $x^3+x^2+x$ where the polynomials are defined over $GF(2)$.
          I've checked this using SINGULAR:




          ring r = 2, (x), lp;



          poly f = x14+x12+x8+x7+x5;



          ideal i = x5+x4+x2+1;



          reduce(f,i);




          x3+x2+x






          share|cite|improve this answer












          Well, the polynomial division of $x^{14}+x^{12}+x^8+x^7+x^5$ by $x^5+x^4+x^2+1$ yields the remainder $x^3+x^2+x$ where the polynomials are defined over $GF(2)$.
          I've checked this using SINGULAR:




          ring r = 2, (x), lp;



          poly f = x14+x12+x8+x7+x5;



          ideal i = x5+x4+x2+1;



          reduce(f,i);




          x3+x2+x







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          Wuestenfux

          3,6861411




          3,6861411












          • Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
            – Zwarte Kop
            2 days ago












          • What its the example?
            – Wuestenfux
            2 days ago










          • Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
            – Zwarte Kop
            2 days ago












          • I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
            – Zwarte Kop
            yesterday


















          • Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
            – Zwarte Kop
            2 days ago












          • What its the example?
            – Wuestenfux
            2 days ago










          • Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
            – Zwarte Kop
            2 days ago












          • I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
            – Zwarte Kop
            yesterday
















          Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
          – Zwarte Kop
          2 days ago






          Ok yes those were the instructions of the question. Can you also explain why when I use any online tool it gives a different answer for binary? Here's an example: Binary form: 010100011010000 divided by 110101 x13+x11+x7+x6+x4 x5+x4+x2+1 Binary form (added zeros): 01010001101000000000 divided by 110101 Result is 011010101100101 Remainder is 00001
          – Zwarte Kop
          2 days ago














          What its the example?
          – Wuestenfux
          2 days ago




          What its the example?
          – Wuestenfux
          2 days ago












          Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
          – Zwarte Kop
          2 days ago






          Example added. Sorry for the formatting I can't press enter without actually posting a comment. I realize the polynomal provided in my comment above is not the same as the one from the instructions but I used the string of bits that my professor included in the powerpoint. When I convert the polynomal into bits myself I also get a wrong answer: x^14+x^12+x^8+x^7+x^5. becomes 101000110100000 and the generator is 110101 the online tool I used gives 00010 or x^1. The tool is located at: asecuritysite.com/comms/crc_div
          – Zwarte Kop
          2 days ago














          I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
          – Zwarte Kop
          yesterday




          I know it's not relevant to this question but I just wanted to mention that the previous answer didn't listen, said the same (wrong?) thing fifteen times, even when I said every source I could find disagreed with him (wikipedia, online tools that do the calculations for you, youtube videos) and then finally deleted his answer (and his account??). 10/10 answer- IGN I'll mail my professor and If he responds I will post the answer here.
          – Zwarte Kop
          yesterday










          Zwarte Kop is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          Zwarte Kop is a new contributor. Be nice, and check out our Code of Conduct.













          Zwarte Kop is a new contributor. Be nice, and check out our Code of Conduct.












          Zwarte Kop is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061116%2fi-cant-solve-a-cyclic-redundancy-check%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          1300-talet

          1300-talet

          Display a custom attribute below product name in the front-end Magento 1.9.3.8