Linear Transformations, Function Composition
Considering the transformations
$ f:Re^{2} rightarrow Re^{2}$ and $ g:Re^{2} rightarrow Re^{2}$
defined by
$f(a,b)= (0,b)$, for any $(a,b) in Re^{2}$
and
$g(a,b)=(a,a)$, for any $(a,b) in Re^{2}$
Justify that $0$ = $f circ g$ $neq$ $g circ f$
$0$ is the null transformation of $Re^{2}$
My Resolution:
First I worked out $(f circ g)$:
$(f circ g)(a,b)$ = $f(g(a,b))$ = $f(a,a) = (0,0)$
Then I worked out $(g circ f)(a,b)=g(f(a,b))=g(0,b)=(0,0)???$
What am I dong wrong?
linear-algebra linear-transformations
add a comment |
Considering the transformations
$ f:Re^{2} rightarrow Re^{2}$ and $ g:Re^{2} rightarrow Re^{2}$
defined by
$f(a,b)= (0,b)$, for any $(a,b) in Re^{2}$
and
$g(a,b)=(a,a)$, for any $(a,b) in Re^{2}$
Justify that $0$ = $f circ g$ $neq$ $g circ f$
$0$ is the null transformation of $Re^{2}$
My Resolution:
First I worked out $(f circ g)$:
$(f circ g)(a,b)$ = $f(g(a,b))$ = $f(a,a) = (0,0)$
Then I worked out $(g circ f)(a,b)=g(f(a,b))=g(0,b)=(0,0)???$
What am I dong wrong?
linear-algebra linear-transformations
1
$f(a,a)neq(0,0)$
– SmileyCraft
Jan 4 at 21:27
Also, $g(0,b)neq (0,0)$.
– user3482749
Jan 4 at 21:30
add a comment |
Considering the transformations
$ f:Re^{2} rightarrow Re^{2}$ and $ g:Re^{2} rightarrow Re^{2}$
defined by
$f(a,b)= (0,b)$, for any $(a,b) in Re^{2}$
and
$g(a,b)=(a,a)$, for any $(a,b) in Re^{2}$
Justify that $0$ = $f circ g$ $neq$ $g circ f$
$0$ is the null transformation of $Re^{2}$
My Resolution:
First I worked out $(f circ g)$:
$(f circ g)(a,b)$ = $f(g(a,b))$ = $f(a,a) = (0,0)$
Then I worked out $(g circ f)(a,b)=g(f(a,b))=g(0,b)=(0,0)???$
What am I dong wrong?
linear-algebra linear-transformations
Considering the transformations
$ f:Re^{2} rightarrow Re^{2}$ and $ g:Re^{2} rightarrow Re^{2}$
defined by
$f(a,b)= (0,b)$, for any $(a,b) in Re^{2}$
and
$g(a,b)=(a,a)$, for any $(a,b) in Re^{2}$
Justify that $0$ = $f circ g$ $neq$ $g circ f$
$0$ is the null transformation of $Re^{2}$
My Resolution:
First I worked out $(f circ g)$:
$(f circ g)(a,b)$ = $f(g(a,b))$ = $f(a,a) = (0,0)$
Then I worked out $(g circ f)(a,b)=g(f(a,b))=g(0,b)=(0,0)???$
What am I dong wrong?
linear-algebra linear-transformations
linear-algebra linear-transformations
asked Jan 4 at 21:25
JakcjonesJakcjones
588
588
1
$f(a,a)neq(0,0)$
– SmileyCraft
Jan 4 at 21:27
Also, $g(0,b)neq (0,0)$.
– user3482749
Jan 4 at 21:30
add a comment |
1
$f(a,a)neq(0,0)$
– SmileyCraft
Jan 4 at 21:27
Also, $g(0,b)neq (0,0)$.
– user3482749
Jan 4 at 21:30
1
1
$f(a,a)neq(0,0)$
– SmileyCraft
Jan 4 at 21:27
$f(a,a)neq(0,0)$
– SmileyCraft
Jan 4 at 21:27
Also, $g(0,b)neq (0,0)$.
– user3482749
Jan 4 at 21:30
Also, $g(0,b)neq (0,0)$.
– user3482749
Jan 4 at 21:30
add a comment |
1 Answer
1
active
oldest
votes
$gf(a,b)=g(f(a,b))=g((0,b))=(0,0)$.
$fg(a,b)=f(g(a,b))=f((a,a))=(0,a)$.
So we have $gf=0$ but $gfne fg$. Perhaps the problem intended to say "Justify $0=gfne fg.$"
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062130%2flinear-transformations-function-composition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$gf(a,b)=g(f(a,b))=g((0,b))=(0,0)$.
$fg(a,b)=f(g(a,b))=f((a,a))=(0,a)$.
So we have $gf=0$ but $gfne fg$. Perhaps the problem intended to say "Justify $0=gfne fg.$"
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
add a comment |
$gf(a,b)=g(f(a,b))=g((0,b))=(0,0)$.
$fg(a,b)=f(g(a,b))=f((a,a))=(0,a)$.
So we have $gf=0$ but $gfne fg$. Perhaps the problem intended to say "Justify $0=gfne fg.$"
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
add a comment |
$gf(a,b)=g(f(a,b))=g((0,b))=(0,0)$.
$fg(a,b)=f(g(a,b))=f((a,a))=(0,a)$.
So we have $gf=0$ but $gfne fg$. Perhaps the problem intended to say "Justify $0=gfne fg.$"
$gf(a,b)=g(f(a,b))=g((0,b))=(0,0)$.
$fg(a,b)=f(g(a,b))=f((a,a))=(0,a)$.
So we have $gf=0$ but $gfne fg$. Perhaps the problem intended to say "Justify $0=gfne fg.$"
answered Jan 4 at 21:43
palmpopalmpo
3861113
3861113
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
add a comment |
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
It says "Justify $0=f circ g neq g circ f$" and it's on the composite function section.
– Jakcjones
Jan 4 at 22:51
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
Well then that's simply incorrect. For example, take $(1,0)$, then $g(1,0)=(1,1)$ and $f(1,1)=(0,1)ne(0,0)$ so $fgne0$.
– palmpo
Jan 5 at 0:07
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
If you have $f(a,a)=(0,a)=(0,0)$, since $ a=0?$
– Jakcjones
Jan 5 at 14:01
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062130%2flinear-transformations-function-composition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$f(a,a)neq(0,0)$
– SmileyCraft
Jan 4 at 21:27
Also, $g(0,b)neq (0,0)$.
– user3482749
Jan 4 at 21:30