Proving that $sumlimits_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$
Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.
sequences-and-series
add a comment |
Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.
sequences-and-series
1
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
– Lucian
Jan 16 '15 at 19:18
add a comment |
Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.
sequences-and-series
Proving that $$sum_{n=0}^{infty }frac{1}{(2n)!!}=sqrt{e}$$
Firstly, I tried to check the value with the exponential function at $x=.5$ but I found its terms not equal to the series terms.
sequences-and-series
sequences-and-series
edited Jan 3 at 20:46
Did
246k23221455
246k23221455
asked Jan 16 '15 at 18:35
user187581
1
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
– Lucian
Jan 16 '15 at 19:18
add a comment |
1
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
– Lucian
Jan 16 '15 at 19:18
1
1
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
– Lucian
Jan 16 '15 at 19:18
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
– Lucian
Jan 16 '15 at 19:18
add a comment |
2 Answers
2
active
oldest
votes
Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
so your series is just
$$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$
add a comment |
$$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$
Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1107024%2fproving-that-sum-limits-n-0-infty-frac12n-sqrte%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
so your series is just
$$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$
add a comment |
Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
so your series is just
$$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$
add a comment |
Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
so your series is just
$$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$
Note that $$(2n)!! = 2cdot4cdot 6 cdots 2n = 2^n n!$$
so your series is just
$$sum_n frac{(1/2)^n}{n!} = e^{frac{1}{2}}$$
answered Jan 16 '15 at 18:38
Crostul
27.6k22352
27.6k22352
add a comment |
add a comment |
$$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$
Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$
add a comment |
$$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$
Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$
add a comment |
$$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$
Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$
$$e^x = sum_{n=0}^inftydfrac{x^n}{n!}$$
Plug $x = dfrac{1}{2}$, then $dfrac{x^n}{n!} = dfrac{1}{2^n n!} = dfrac{1}{2 cdot 4 cdot 6 cdots 2n} = dfrac{1}{(2n)!!}$
answered Jan 16 '15 at 18:38
Petite Etincelle
12.3k12147
12.3k12147
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1107024%2fproving-that-sum-limits-n-0-infty-frac12n-sqrte%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Could you also prove that $quaddisplaystylesum_{n=0}^inftyfrac1{(2n+1)!!}=sqrt e~int_0^1e^{-x^2/2}~dxquad?~$ :-)
– Lucian
Jan 16 '15 at 19:18