Evaluating an improper integral $int_{0}^{infty}frac{x^2}{(x^4+1)^2}dx$












8














I tried to solve the integral: $$int_{0}^{infty}frac{x^2}{(x^4+1)^2}dx$$
using $ x = sqrt{tan(u)}$ and $dx = frac{ sec^2(u)}{2sqrt{tan(u)}} du,$



but I ended up with an even worse looking integral $$ int_{0}^{frac{pi}{2}}frac{sqrt{tan(u)}}{sec^2(u)}du.$$



Wolfram gave an answer of $ dfrac{pi}{8sqrt{2}},$ but how would one get to that answer?










share|cite|improve this question
























  • Are you familiar with either the Beta function or the Residue Theorem?
    – Zachary
    Jan 4 at 1:29










  • @Zachary Unfortunately no I'm in bc calc and we haven't learned any of the fancier integration techniques
    – Jessca
    Jan 4 at 1:33










  • Jess you should be able to use partial fractions, using $$ x^4+1 = (x^2 + x sqrt 2 + 1) (x^2 - x sqrt 2 + 1)$$
    – Will Jagy
    Jan 4 at 1:41
















8














I tried to solve the integral: $$int_{0}^{infty}frac{x^2}{(x^4+1)^2}dx$$
using $ x = sqrt{tan(u)}$ and $dx = frac{ sec^2(u)}{2sqrt{tan(u)}} du,$



but I ended up with an even worse looking integral $$ int_{0}^{frac{pi}{2}}frac{sqrt{tan(u)}}{sec^2(u)}du.$$



Wolfram gave an answer of $ dfrac{pi}{8sqrt{2}},$ but how would one get to that answer?










share|cite|improve this question
























  • Are you familiar with either the Beta function or the Residue Theorem?
    – Zachary
    Jan 4 at 1:29










  • @Zachary Unfortunately no I'm in bc calc and we haven't learned any of the fancier integration techniques
    – Jessca
    Jan 4 at 1:33










  • Jess you should be able to use partial fractions, using $$ x^4+1 = (x^2 + x sqrt 2 + 1) (x^2 - x sqrt 2 + 1)$$
    – Will Jagy
    Jan 4 at 1:41














8












8








8


3





I tried to solve the integral: $$int_{0}^{infty}frac{x^2}{(x^4+1)^2}dx$$
using $ x = sqrt{tan(u)}$ and $dx = frac{ sec^2(u)}{2sqrt{tan(u)}} du,$



but I ended up with an even worse looking integral $$ int_{0}^{frac{pi}{2}}frac{sqrt{tan(u)}}{sec^2(u)}du.$$



Wolfram gave an answer of $ dfrac{pi}{8sqrt{2}},$ but how would one get to that answer?










share|cite|improve this question















I tried to solve the integral: $$int_{0}^{infty}frac{x^2}{(x^4+1)^2}dx$$
using $ x = sqrt{tan(u)}$ and $dx = frac{ sec^2(u)}{2sqrt{tan(u)}} du,$



but I ended up with an even worse looking integral $$ int_{0}^{frac{pi}{2}}frac{sqrt{tan(u)}}{sec^2(u)}du.$$



Wolfram gave an answer of $ dfrac{pi}{8sqrt{2}},$ but how would one get to that answer?







calculus definite-integrals improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









amWhy

192k28225439




192k28225439










asked Jan 4 at 1:22









JesscaJessca

455




455












  • Are you familiar with either the Beta function or the Residue Theorem?
    – Zachary
    Jan 4 at 1:29










  • @Zachary Unfortunately no I'm in bc calc and we haven't learned any of the fancier integration techniques
    – Jessca
    Jan 4 at 1:33










  • Jess you should be able to use partial fractions, using $$ x^4+1 = (x^2 + x sqrt 2 + 1) (x^2 - x sqrt 2 + 1)$$
    – Will Jagy
    Jan 4 at 1:41


















  • Are you familiar with either the Beta function or the Residue Theorem?
    – Zachary
    Jan 4 at 1:29










  • @Zachary Unfortunately no I'm in bc calc and we haven't learned any of the fancier integration techniques
    – Jessca
    Jan 4 at 1:33










  • Jess you should be able to use partial fractions, using $$ x^4+1 = (x^2 + x sqrt 2 + 1) (x^2 - x sqrt 2 + 1)$$
    – Will Jagy
    Jan 4 at 1:41
















Are you familiar with either the Beta function or the Residue Theorem?
– Zachary
Jan 4 at 1:29




Are you familiar with either the Beta function or the Residue Theorem?
– Zachary
Jan 4 at 1:29












@Zachary Unfortunately no I'm in bc calc and we haven't learned any of the fancier integration techniques
– Jessca
Jan 4 at 1:33




@Zachary Unfortunately no I'm in bc calc and we haven't learned any of the fancier integration techniques
– Jessca
Jan 4 at 1:33












Jess you should be able to use partial fractions, using $$ x^4+1 = (x^2 + x sqrt 2 + 1) (x^2 - x sqrt 2 + 1)$$
– Will Jagy
Jan 4 at 1:41




Jess you should be able to use partial fractions, using $$ x^4+1 = (x^2 + x sqrt 2 + 1) (x^2 - x sqrt 2 + 1)$$
– Will Jagy
Jan 4 at 1:41










5 Answers
5






active

oldest

votes


















12














Let us start with a step of integration by parts:
$$ int_{0}^{+infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{+infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx=frac{1}{4}int_{0}^{+infty}frac{dx}{x^2+frac{1}{x^2}}$$
and finish with Glasser's master theorem:
$$ frac{1}{8}int_{-infty}^{+infty}frac{dx}{left(x-frac{1}{x}right)^2+2}stackrel{text{GMT}}{=}frac{1}{8}int_{-infty}^{+infty}frac{dx}{x^2+2} = frac{pi}{8sqrt{2}}.$$






share|cite|improve this answer



















  • 1




    I was actually just thinking about if it was possible to use GMT to evaluate that integral!
    – Zachary
    Jan 4 at 1:57








  • 1




    Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
    – Zacky
    Jan 4 at 2:03












  • I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
    – Jessca
    Jan 4 at 2:26








  • 2




    @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
    – Jack D'Aurizio
    Jan 4 at 2:40



















3














Write $$frac{x^2}{(1+x^4)^2} = frac{4x^3}{(1+x^4)^2} cdot frac{1}{4x}.$$ Then integration by parts with the choice $$u = frac{1}{4x}, quad du = -frac{1}{4x^2} , dx, \ dv = frac{4x^3}{(1+x^4)^2} , dx, quad v = -frac{1}{1+x^4},$$ yields $$I_1(x) = int frac{x^2}{(1+x^4)^2} , dx = -frac{1}{4x(1+x^4)} - int frac{1}{4x^2(1+x^4)} , dx.$$ Now write $$frac{1}{x^2(1+x^4)} = frac{1}{x^2} - frac{x^2}{1+x^4},$$ thus $$I_1(x) = -frac{1}{4x(1+x^4)} + frac{1}{4x} + frac{1}{4} int frac{x^2}{1+x^4} , dx = frac{x^3}{4(1+x^4)} + frac{1}{4} I_2(x),$$ where we now seek to evaluate $I_2(x)$. This is accomplished in a number of ways; one is to perform the factorization $$1+x^4 = (1 + sqrt{2} x + x^2)(1 - sqrt{2} x + x^2),$$ and compute the partial fraction decomposition $$frac{x^2}{1+x^4} = frac{1}{2sqrt{2}} left( frac{x}{1 - sqrt{2} x + x^2} - frac{x}{1 + sqrt{2} x + x^2} right).$$ Then each term is integrable in closed form. This is not the easiest or most elegant approach, but it is perhaps the most elementary, requiring no knowledge beyond AP Calculus BC.






share|cite|improve this answer





























    3














    Consider the integral
    $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm{d}x$$
    Applying the substitution $t=sin(x)^2$, we see that
    $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm{d}t$$
    $$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm{d}t$$
    Recall the definition of the Beta function
    $$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm{d}t=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
    Where $Gamma(s)$ is the Gamma Function.



    Hence we see that
    $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
    From $$frac{tan(x)^{1/2}}{sec(x)^2}=sin(x)^{1/2}cos(x)^{3/2}$$
    We see that your integral is
    $$I(1/2,3/2)=frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}$$
    $$I(1/2,3/2)=frac{Gamma(1/4)Gamma(3/4)}{8}$$
    And from
    $$Gamma(s)Gamma(1-s)=fracpi{sinpi s},qquad snotinBbb Z$$
    We have
    $$I(1/2,3/2)=frac{pi}{8sqrt2}$$






    share|cite|improve this answer



















    • 1




      seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
      – Masacroso
      Jan 4 at 1:54










    • I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
      – Zachary
      Jan 4 at 1:55






    • 1




      you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
      – Masacroso
      Jan 4 at 2:09



















    1














    We could do it with contour integration.



    take the contour from 0 to R along the real axis.



    $int_0^R frac {x^2}{(x^4+1)^2} dx$



    The quater circle.



    $int_0^{frac pi 2} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) dt$



    $lim_limits{Rto infty} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) = 0$



    And down the imaginary axis.



    $int_R^0 frac {(e^{frac {pi}{2} i} x)^2}{((e^{frac {pi}{2} i} x)^4+1)^2} (e^{frac {pi}{2} i}) dx\
    int_R^0 frac {-x^2}{x^4+1)^2} (i) dx\
    $



    $(1+i)int_0^infty frac {x^2}{(x^4+1)^2} dx = (2pi i) text{ Res}_{left(x=e^{fracpi4i}right)}frac {x^2}{(x^4+1)^2}$



    The pole is of order 2.



    $frac {d}{dx}frac {x^2}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^2} = frac {2x(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i}) - 2x^2(3x^2 + 2xe^{frac pi4 i} + e^{frac {2pi}{4} i})}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^3}$



    Evaluated at $e^{frac {pi}{4} i}$



    $frac {4}{(4e^{frac {3pi}4 i})^3} = frac {1}{16e^{frac {pi}4 i}}$



    $int_0^infty frac {x^2}{(x^4+1)^2} dx = frac {2pi i}{16sqrt 2 i} = frac {pi}{8sqrt 2}$






    share|cite|improve this answer





























      0














      Using the method I employed here: we observe that



      begin{equation}
      int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx = frac{1}{4} cdot 1^{frac{2 + 1}{4} - 2} cdot Bleft(2 - frac{2 + 1}{4}, frac{2 + 1}{4} right) = frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right)
      end{equation}



      Using the relationship between the Beta and Gamma function:



      begin{align}
      int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx &= frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right) = frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4} + frac{3}{4}right)} \
      &= frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(2right)} =frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{8}
      end{align}






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061224%2fevaluating-an-improper-integral-int-0-infty-fracx2x412dx%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        12














        Let us start with a step of integration by parts:
        $$ int_{0}^{+infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{+infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx=frac{1}{4}int_{0}^{+infty}frac{dx}{x^2+frac{1}{x^2}}$$
        and finish with Glasser's master theorem:
        $$ frac{1}{8}int_{-infty}^{+infty}frac{dx}{left(x-frac{1}{x}right)^2+2}stackrel{text{GMT}}{=}frac{1}{8}int_{-infty}^{+infty}frac{dx}{x^2+2} = frac{pi}{8sqrt{2}}.$$






        share|cite|improve this answer



















        • 1




          I was actually just thinking about if it was possible to use GMT to evaluate that integral!
          – Zachary
          Jan 4 at 1:57








        • 1




          Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
          – Zacky
          Jan 4 at 2:03












        • I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
          – Jessca
          Jan 4 at 2:26








        • 2




          @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
          – Jack D'Aurizio
          Jan 4 at 2:40
















        12














        Let us start with a step of integration by parts:
        $$ int_{0}^{+infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{+infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx=frac{1}{4}int_{0}^{+infty}frac{dx}{x^2+frac{1}{x^2}}$$
        and finish with Glasser's master theorem:
        $$ frac{1}{8}int_{-infty}^{+infty}frac{dx}{left(x-frac{1}{x}right)^2+2}stackrel{text{GMT}}{=}frac{1}{8}int_{-infty}^{+infty}frac{dx}{x^2+2} = frac{pi}{8sqrt{2}}.$$






        share|cite|improve this answer



















        • 1




          I was actually just thinking about if it was possible to use GMT to evaluate that integral!
          – Zachary
          Jan 4 at 1:57








        • 1




          Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
          – Zacky
          Jan 4 at 2:03












        • I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
          – Jessca
          Jan 4 at 2:26








        • 2




          @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
          – Jack D'Aurizio
          Jan 4 at 2:40














        12












        12








        12






        Let us start with a step of integration by parts:
        $$ int_{0}^{+infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{+infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx=frac{1}{4}int_{0}^{+infty}frac{dx}{x^2+frac{1}{x^2}}$$
        and finish with Glasser's master theorem:
        $$ frac{1}{8}int_{-infty}^{+infty}frac{dx}{left(x-frac{1}{x}right)^2+2}stackrel{text{GMT}}{=}frac{1}{8}int_{-infty}^{+infty}frac{dx}{x^2+2} = frac{pi}{8sqrt{2}}.$$






        share|cite|improve this answer














        Let us start with a step of integration by parts:
        $$ int_{0}^{+infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{+infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx=frac{1}{4}int_{0}^{+infty}frac{dx}{x^2+frac{1}{x^2}}$$
        and finish with Glasser's master theorem:
        $$ frac{1}{8}int_{-infty}^{+infty}frac{dx}{left(x-frac{1}{x}right)^2+2}stackrel{text{GMT}}{=}frac{1}{8}int_{-infty}^{+infty}frac{dx}{x^2+2} = frac{pi}{8sqrt{2}}.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 4 at 1:38

























        answered Jan 4 at 1:26









        Jack D'AurizioJack D'Aurizio

        287k33280658




        287k33280658








        • 1




          I was actually just thinking about if it was possible to use GMT to evaluate that integral!
          – Zachary
          Jan 4 at 1:57








        • 1




          Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
          – Zacky
          Jan 4 at 2:03












        • I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
          – Jessca
          Jan 4 at 2:26








        • 2




          @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
          – Jack D'Aurizio
          Jan 4 at 2:40














        • 1




          I was actually just thinking about if it was possible to use GMT to evaluate that integral!
          – Zachary
          Jan 4 at 1:57








        • 1




          Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
          – Zacky
          Jan 4 at 2:03












        • I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
          – Jessca
          Jan 4 at 2:26








        • 2




          @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
          – Jack D'Aurizio
          Jan 4 at 2:40








        1




        1




        I was actually just thinking about if it was possible to use GMT to evaluate that integral!
        – Zachary
        Jan 4 at 1:57






        I was actually just thinking about if it was possible to use GMT to evaluate that integral!
        – Zachary
        Jan 4 at 1:57






        1




        1




        Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
        – Zacky
        Jan 4 at 2:03






        Quite impressive! Since the OP mentioned in the comments that hasn't learnt any fancier tricks I just want to mention that on the integral obtained after integrating by parts, we can do a $x=frac{1}{t}$ thus: $$J=int_0^infty frac{x^2} {1+x^4} dx=int_0^infty frac{dt} {1 +t^4}dt$$And if we add those two we get:$$2J=int_0^infty frac{x^2 +1}{x^4 +1}dx=int_0^infty frac{frac{1} {x^2} +1}{x^2 +frac{1} {x^2} }dx$$ And now completing the square in the denominator and letting $x-frac{1} {x} =t$ yields the same thing as by GMT.
        – Zacky
        Jan 4 at 2:03














        I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
        – Jessca
        Jan 4 at 2:26






        I'm a little confused on how $int_{0}^{infty}frac{1}{4x}cdotfrac{4x^3}{(x^4+1)^2},dx =int_{0}^{infty}frac{1}{4x^2}left(1-frac{1}{1+x^4}right),dx$ after integrating by parts becuase I got $frac{1}{4x}(frac{-1}{x^4+1})vert_{0}^{infty} - int_{0}^{infty}frac{1}{4x^2(x^4+1)}$ how are these two equivalent?
        – Jessca
        Jan 4 at 2:26






        2




        2




        @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
        – Jack D'Aurizio
        Jan 4 at 2:40




        @Jessca: it is better to take $1-frac{1}{1+x^4}$ as antiderivative of $frac{4x^3}{1+x^4}$, otherwise you end up with the difference of two divergent objects, not very useful.
        – Jack D'Aurizio
        Jan 4 at 2:40











        3














        Write $$frac{x^2}{(1+x^4)^2} = frac{4x^3}{(1+x^4)^2} cdot frac{1}{4x}.$$ Then integration by parts with the choice $$u = frac{1}{4x}, quad du = -frac{1}{4x^2} , dx, \ dv = frac{4x^3}{(1+x^4)^2} , dx, quad v = -frac{1}{1+x^4},$$ yields $$I_1(x) = int frac{x^2}{(1+x^4)^2} , dx = -frac{1}{4x(1+x^4)} - int frac{1}{4x^2(1+x^4)} , dx.$$ Now write $$frac{1}{x^2(1+x^4)} = frac{1}{x^2} - frac{x^2}{1+x^4},$$ thus $$I_1(x) = -frac{1}{4x(1+x^4)} + frac{1}{4x} + frac{1}{4} int frac{x^2}{1+x^4} , dx = frac{x^3}{4(1+x^4)} + frac{1}{4} I_2(x),$$ where we now seek to evaluate $I_2(x)$. This is accomplished in a number of ways; one is to perform the factorization $$1+x^4 = (1 + sqrt{2} x + x^2)(1 - sqrt{2} x + x^2),$$ and compute the partial fraction decomposition $$frac{x^2}{1+x^4} = frac{1}{2sqrt{2}} left( frac{x}{1 - sqrt{2} x + x^2} - frac{x}{1 + sqrt{2} x + x^2} right).$$ Then each term is integrable in closed form. This is not the easiest or most elegant approach, but it is perhaps the most elementary, requiring no knowledge beyond AP Calculus BC.






        share|cite|improve this answer


























          3














          Write $$frac{x^2}{(1+x^4)^2} = frac{4x^3}{(1+x^4)^2} cdot frac{1}{4x}.$$ Then integration by parts with the choice $$u = frac{1}{4x}, quad du = -frac{1}{4x^2} , dx, \ dv = frac{4x^3}{(1+x^4)^2} , dx, quad v = -frac{1}{1+x^4},$$ yields $$I_1(x) = int frac{x^2}{(1+x^4)^2} , dx = -frac{1}{4x(1+x^4)} - int frac{1}{4x^2(1+x^4)} , dx.$$ Now write $$frac{1}{x^2(1+x^4)} = frac{1}{x^2} - frac{x^2}{1+x^4},$$ thus $$I_1(x) = -frac{1}{4x(1+x^4)} + frac{1}{4x} + frac{1}{4} int frac{x^2}{1+x^4} , dx = frac{x^3}{4(1+x^4)} + frac{1}{4} I_2(x),$$ where we now seek to evaluate $I_2(x)$. This is accomplished in a number of ways; one is to perform the factorization $$1+x^4 = (1 + sqrt{2} x + x^2)(1 - sqrt{2} x + x^2),$$ and compute the partial fraction decomposition $$frac{x^2}{1+x^4} = frac{1}{2sqrt{2}} left( frac{x}{1 - sqrt{2} x + x^2} - frac{x}{1 + sqrt{2} x + x^2} right).$$ Then each term is integrable in closed form. This is not the easiest or most elegant approach, but it is perhaps the most elementary, requiring no knowledge beyond AP Calculus BC.






          share|cite|improve this answer
























            3












            3








            3






            Write $$frac{x^2}{(1+x^4)^2} = frac{4x^3}{(1+x^4)^2} cdot frac{1}{4x}.$$ Then integration by parts with the choice $$u = frac{1}{4x}, quad du = -frac{1}{4x^2} , dx, \ dv = frac{4x^3}{(1+x^4)^2} , dx, quad v = -frac{1}{1+x^4},$$ yields $$I_1(x) = int frac{x^2}{(1+x^4)^2} , dx = -frac{1}{4x(1+x^4)} - int frac{1}{4x^2(1+x^4)} , dx.$$ Now write $$frac{1}{x^2(1+x^4)} = frac{1}{x^2} - frac{x^2}{1+x^4},$$ thus $$I_1(x) = -frac{1}{4x(1+x^4)} + frac{1}{4x} + frac{1}{4} int frac{x^2}{1+x^4} , dx = frac{x^3}{4(1+x^4)} + frac{1}{4} I_2(x),$$ where we now seek to evaluate $I_2(x)$. This is accomplished in a number of ways; one is to perform the factorization $$1+x^4 = (1 + sqrt{2} x + x^2)(1 - sqrt{2} x + x^2),$$ and compute the partial fraction decomposition $$frac{x^2}{1+x^4} = frac{1}{2sqrt{2}} left( frac{x}{1 - sqrt{2} x + x^2} - frac{x}{1 + sqrt{2} x + x^2} right).$$ Then each term is integrable in closed form. This is not the easiest or most elegant approach, but it is perhaps the most elementary, requiring no knowledge beyond AP Calculus BC.






            share|cite|improve this answer












            Write $$frac{x^2}{(1+x^4)^2} = frac{4x^3}{(1+x^4)^2} cdot frac{1}{4x}.$$ Then integration by parts with the choice $$u = frac{1}{4x}, quad du = -frac{1}{4x^2} , dx, \ dv = frac{4x^3}{(1+x^4)^2} , dx, quad v = -frac{1}{1+x^4},$$ yields $$I_1(x) = int frac{x^2}{(1+x^4)^2} , dx = -frac{1}{4x(1+x^4)} - int frac{1}{4x^2(1+x^4)} , dx.$$ Now write $$frac{1}{x^2(1+x^4)} = frac{1}{x^2} - frac{x^2}{1+x^4},$$ thus $$I_1(x) = -frac{1}{4x(1+x^4)} + frac{1}{4x} + frac{1}{4} int frac{x^2}{1+x^4} , dx = frac{x^3}{4(1+x^4)} + frac{1}{4} I_2(x),$$ where we now seek to evaluate $I_2(x)$. This is accomplished in a number of ways; one is to perform the factorization $$1+x^4 = (1 + sqrt{2} x + x^2)(1 - sqrt{2} x + x^2),$$ and compute the partial fraction decomposition $$frac{x^2}{1+x^4} = frac{1}{2sqrt{2}} left( frac{x}{1 - sqrt{2} x + x^2} - frac{x}{1 + sqrt{2} x + x^2} right).$$ Then each term is integrable in closed form. This is not the easiest or most elegant approach, but it is perhaps the most elementary, requiring no knowledge beyond AP Calculus BC.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 4 at 1:54









            heropupheropup

            62.6k66099




            62.6k66099























                3














                Consider the integral
                $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm{d}x$$
                Applying the substitution $t=sin(x)^2$, we see that
                $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm{d}t$$
                $$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm{d}t$$
                Recall the definition of the Beta function
                $$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm{d}t=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
                Where $Gamma(s)$ is the Gamma Function.



                Hence we see that
                $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                From $$frac{tan(x)^{1/2}}{sec(x)^2}=sin(x)^{1/2}cos(x)^{3/2}$$
                We see that your integral is
                $$I(1/2,3/2)=frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}$$
                $$I(1/2,3/2)=frac{Gamma(1/4)Gamma(3/4)}{8}$$
                And from
                $$Gamma(s)Gamma(1-s)=fracpi{sinpi s},qquad snotinBbb Z$$
                We have
                $$I(1/2,3/2)=frac{pi}{8sqrt2}$$






                share|cite|improve this answer



















                • 1




                  seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
                  – Masacroso
                  Jan 4 at 1:54










                • I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
                  – Zachary
                  Jan 4 at 1:55






                • 1




                  you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
                  – Masacroso
                  Jan 4 at 2:09
















                3














                Consider the integral
                $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm{d}x$$
                Applying the substitution $t=sin(x)^2$, we see that
                $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm{d}t$$
                $$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm{d}t$$
                Recall the definition of the Beta function
                $$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm{d}t=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
                Where $Gamma(s)$ is the Gamma Function.



                Hence we see that
                $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                From $$frac{tan(x)^{1/2}}{sec(x)^2}=sin(x)^{1/2}cos(x)^{3/2}$$
                We see that your integral is
                $$I(1/2,3/2)=frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}$$
                $$I(1/2,3/2)=frac{Gamma(1/4)Gamma(3/4)}{8}$$
                And from
                $$Gamma(s)Gamma(1-s)=fracpi{sinpi s},qquad snotinBbb Z$$
                We have
                $$I(1/2,3/2)=frac{pi}{8sqrt2}$$






                share|cite|improve this answer



















                • 1




                  seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
                  – Masacroso
                  Jan 4 at 1:54










                • I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
                  – Zachary
                  Jan 4 at 1:55






                • 1




                  you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
                  – Masacroso
                  Jan 4 at 2:09














                3












                3








                3






                Consider the integral
                $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm{d}x$$
                Applying the substitution $t=sin(x)^2$, we see that
                $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm{d}t$$
                $$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm{d}t$$
                Recall the definition of the Beta function
                $$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm{d}t=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
                Where $Gamma(s)$ is the Gamma Function.



                Hence we see that
                $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                From $$frac{tan(x)^{1/2}}{sec(x)^2}=sin(x)^{1/2}cos(x)^{3/2}$$
                We see that your integral is
                $$I(1/2,3/2)=frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}$$
                $$I(1/2,3/2)=frac{Gamma(1/4)Gamma(3/4)}{8}$$
                And from
                $$Gamma(s)Gamma(1-s)=fracpi{sinpi s},qquad snotinBbb Z$$
                We have
                $$I(1/2,3/2)=frac{pi}{8sqrt2}$$






                share|cite|improve this answer














                Consider the integral
                $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm{d}x$$
                Applying the substitution $t=sin(x)^2$, we see that
                $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm{d}t$$
                $$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm{d}t$$
                Recall the definition of the Beta function
                $$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm{d}t=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
                Where $Gamma(s)$ is the Gamma Function.



                Hence we see that
                $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                From $$frac{tan(x)^{1/2}}{sec(x)^2}=sin(x)^{1/2}cos(x)^{3/2}$$
                We see that your integral is
                $$I(1/2,3/2)=frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}$$
                $$I(1/2,3/2)=frac{Gamma(1/4)Gamma(3/4)}{8}$$
                And from
                $$Gamma(s)Gamma(1-s)=fracpi{sinpi s},qquad snotinBbb Z$$
                We have
                $$I(1/2,3/2)=frac{pi}{8sqrt2}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited yesterday

























                answered Jan 4 at 1:40









                clathratusclathratus

                3,243331




                3,243331








                • 1




                  seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
                  – Masacroso
                  Jan 4 at 1:54










                • I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
                  – Zachary
                  Jan 4 at 1:55






                • 1




                  you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
                  – Masacroso
                  Jan 4 at 2:09














                • 1




                  seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
                  – Masacroso
                  Jan 4 at 1:54










                • I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
                  – Zachary
                  Jan 4 at 1:55






                • 1




                  you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
                  – Masacroso
                  Jan 4 at 2:09








                1




                1




                seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
                – Masacroso
                Jan 4 at 1:54




                seems fine, but you will need some tool to compute the last expression. Note that $Gamma(3/4)Gamma(5/4)=-frac14Gamma(-1/4)Gamma(5/4)$, then you can use the reflection formula
                – Masacroso
                Jan 4 at 1:54












                I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
                – Zachary
                Jan 4 at 1:55




                I would maybe at least give the definition of the Gamma function the OP may not be familiar with it
                – Zachary
                Jan 4 at 1:55




                1




                1




                you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
                – Masacroso
                Jan 4 at 2:09




                you last expression seems wrong, note that $Gamma(2)=1$ and so $$frac{Gamma(3/4)Gamma(5/4)}{2Gamma(2)}=frac{Gamma(3/4)Gamma(1/4)}{8}$$ where we used the functional equation $frac14Gamma(1/4)=Gamma(1/4+1)=Gamma(5/4)$
                – Masacroso
                Jan 4 at 2:09











                1














                We could do it with contour integration.



                take the contour from 0 to R along the real axis.



                $int_0^R frac {x^2}{(x^4+1)^2} dx$



                The quater circle.



                $int_0^{frac pi 2} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) dt$



                $lim_limits{Rto infty} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) = 0$



                And down the imaginary axis.



                $int_R^0 frac {(e^{frac {pi}{2} i} x)^2}{((e^{frac {pi}{2} i} x)^4+1)^2} (e^{frac {pi}{2} i}) dx\
                int_R^0 frac {-x^2}{x^4+1)^2} (i) dx\
                $



                $(1+i)int_0^infty frac {x^2}{(x^4+1)^2} dx = (2pi i) text{ Res}_{left(x=e^{fracpi4i}right)}frac {x^2}{(x^4+1)^2}$



                The pole is of order 2.



                $frac {d}{dx}frac {x^2}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^2} = frac {2x(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i}) - 2x^2(3x^2 + 2xe^{frac pi4 i} + e^{frac {2pi}{4} i})}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^3}$



                Evaluated at $e^{frac {pi}{4} i}$



                $frac {4}{(4e^{frac {3pi}4 i})^3} = frac {1}{16e^{frac {pi}4 i}}$



                $int_0^infty frac {x^2}{(x^4+1)^2} dx = frac {2pi i}{16sqrt 2 i} = frac {pi}{8sqrt 2}$






                share|cite|improve this answer


























                  1














                  We could do it with contour integration.



                  take the contour from 0 to R along the real axis.



                  $int_0^R frac {x^2}{(x^4+1)^2} dx$



                  The quater circle.



                  $int_0^{frac pi 2} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) dt$



                  $lim_limits{Rto infty} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) = 0$



                  And down the imaginary axis.



                  $int_R^0 frac {(e^{frac {pi}{2} i} x)^2}{((e^{frac {pi}{2} i} x)^4+1)^2} (e^{frac {pi}{2} i}) dx\
                  int_R^0 frac {-x^2}{x^4+1)^2} (i) dx\
                  $



                  $(1+i)int_0^infty frac {x^2}{(x^4+1)^2} dx = (2pi i) text{ Res}_{left(x=e^{fracpi4i}right)}frac {x^2}{(x^4+1)^2}$



                  The pole is of order 2.



                  $frac {d}{dx}frac {x^2}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^2} = frac {2x(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i}) - 2x^2(3x^2 + 2xe^{frac pi4 i} + e^{frac {2pi}{4} i})}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^3}$



                  Evaluated at $e^{frac {pi}{4} i}$



                  $frac {4}{(4e^{frac {3pi}4 i})^3} = frac {1}{16e^{frac {pi}4 i}}$



                  $int_0^infty frac {x^2}{(x^4+1)^2} dx = frac {2pi i}{16sqrt 2 i} = frac {pi}{8sqrt 2}$






                  share|cite|improve this answer
























                    1












                    1








                    1






                    We could do it with contour integration.



                    take the contour from 0 to R along the real axis.



                    $int_0^R frac {x^2}{(x^4+1)^2} dx$



                    The quater circle.



                    $int_0^{frac pi 2} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) dt$



                    $lim_limits{Rto infty} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) = 0$



                    And down the imaginary axis.



                    $int_R^0 frac {(e^{frac {pi}{2} i} x)^2}{((e^{frac {pi}{2} i} x)^4+1)^2} (e^{frac {pi}{2} i}) dx\
                    int_R^0 frac {-x^2}{x^4+1)^2} (i) dx\
                    $



                    $(1+i)int_0^infty frac {x^2}{(x^4+1)^2} dx = (2pi i) text{ Res}_{left(x=e^{fracpi4i}right)}frac {x^2}{(x^4+1)^2}$



                    The pole is of order 2.



                    $frac {d}{dx}frac {x^2}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^2} = frac {2x(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i}) - 2x^2(3x^2 + 2xe^{frac pi4 i} + e^{frac {2pi}{4} i})}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^3}$



                    Evaluated at $e^{frac {pi}{4} i}$



                    $frac {4}{(4e^{frac {3pi}4 i})^3} = frac {1}{16e^{frac {pi}4 i}}$



                    $int_0^infty frac {x^2}{(x^4+1)^2} dx = frac {2pi i}{16sqrt 2 i} = frac {pi}{8sqrt 2}$






                    share|cite|improve this answer












                    We could do it with contour integration.



                    take the contour from 0 to R along the real axis.



                    $int_0^R frac {x^2}{(x^4+1)^2} dx$



                    The quater circle.



                    $int_0^{frac pi 2} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) dt$



                    $lim_limits{Rto infty} frac {R^2e^2it}{(R^4e^{4it}+1)^2}(iRe^{it}) = 0$



                    And down the imaginary axis.



                    $int_R^0 frac {(e^{frac {pi}{2} i} x)^2}{((e^{frac {pi}{2} i} x)^4+1)^2} (e^{frac {pi}{2} i}) dx\
                    int_R^0 frac {-x^2}{x^4+1)^2} (i) dx\
                    $



                    $(1+i)int_0^infty frac {x^2}{(x^4+1)^2} dx = (2pi i) text{ Res}_{left(x=e^{fracpi4i}right)}frac {x^2}{(x^4+1)^2}$



                    The pole is of order 2.



                    $frac {d}{dx}frac {x^2}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^2} = frac {2x(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i}) - 2x^2(3x^2 + 2xe^{frac pi4 i} + e^{frac {2pi}{4} i})}{(x^3 + x^2e^{frac pi4 i} + xe^{frac {2pi}{4} i}+e^{frac {3pi}{4} i})^3}$



                    Evaluated at $e^{frac {pi}{4} i}$



                    $frac {4}{(4e^{frac {3pi}4 i})^3} = frac {1}{16e^{frac {pi}4 i}}$



                    $int_0^infty frac {x^2}{(x^4+1)^2} dx = frac {2pi i}{16sqrt 2 i} = frac {pi}{8sqrt 2}$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 4 at 2:29









                    Doug MDoug M

                    44.2k31854




                    44.2k31854























                        0














                        Using the method I employed here: we observe that



                        begin{equation}
                        int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx = frac{1}{4} cdot 1^{frac{2 + 1}{4} - 2} cdot Bleft(2 - frac{2 + 1}{4}, frac{2 + 1}{4} right) = frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right)
                        end{equation}



                        Using the relationship between the Beta and Gamma function:



                        begin{align}
                        int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx &= frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right) = frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4} + frac{3}{4}right)} \
                        &= frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(2right)} =frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{8}
                        end{align}






                        share|cite|improve this answer


























                          0














                          Using the method I employed here: we observe that



                          begin{equation}
                          int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx = frac{1}{4} cdot 1^{frac{2 + 1}{4} - 2} cdot Bleft(2 - frac{2 + 1}{4}, frac{2 + 1}{4} right) = frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right)
                          end{equation}



                          Using the relationship between the Beta and Gamma function:



                          begin{align}
                          int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx &= frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right) = frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4} + frac{3}{4}right)} \
                          &= frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(2right)} =frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{8}
                          end{align}






                          share|cite|improve this answer
























                            0












                            0








                            0






                            Using the method I employed here: we observe that



                            begin{equation}
                            int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx = frac{1}{4} cdot 1^{frac{2 + 1}{4} - 2} cdot Bleft(2 - frac{2 + 1}{4}, frac{2 + 1}{4} right) = frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right)
                            end{equation}



                            Using the relationship between the Beta and Gamma function:



                            begin{align}
                            int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx &= frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right) = frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4} + frac{3}{4}right)} \
                            &= frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(2right)} =frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{8}
                            end{align}






                            share|cite|improve this answer












                            Using the method I employed here: we observe that



                            begin{equation}
                            int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx = frac{1}{4} cdot 1^{frac{2 + 1}{4} - 2} cdot Bleft(2 - frac{2 + 1}{4}, frac{2 + 1}{4} right) = frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right)
                            end{equation}



                            Using the relationship between the Beta and Gamma function:



                            begin{align}
                            int_{0}^{infty} frac{x^2}{left(x^4 + 1right)^2}:dx &= frac{1}{4}Bleft(frac{5}{4}, frac{3}{4}right) = frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4} + frac{3}{4}right)} \
                            &= frac{1}{4}frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{Gammaleft(2right)} =frac{Gammaleft(frac{5}{4}right)Gammaleft(frac{3}{4}right)}{8}
                            end{align}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 4 at 8:00









                            DavidGDavidG

                            1,830620




                            1,830620






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061224%2fevaluating-an-improper-integral-int-0-infty-fracx2x412dx%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                1300-talet

                                1300-talet

                                Display a custom attribute below product name in the front-end Magento 1.9.3.8