How to plot two surfaces and the intersection curve?












10














I want to draw the intersection line (curve line) of two functions x^2+y^2+z^2=4 (Zmin= 0) and x^2+y^2=2y in the same coordinate system as follows.



enter image description here



I have read pst-3dplot and pst-solides3d but I can only draw the following.



enter image description here



MWE



documentclass[12pt,pstricks,border=15pt]{standalone}

usepackage{pst-3dplot,pst-solides3d}
begin{document}
begin{pspicture}(-5,-5)(5,5)
pstThreeDCoor

psImplicitSurface[XMinMax=-2.0 2.0 0.15,YMinMax=-2.0 2.0 0.15,ZMinMax= 0 2.25 0.15,algebraic,ImplFunction=x^2+y^2+z^2-4]%
end{pspicture}

end{document}


Question



How to plot two surfaces and the intersection curve?










share|improve this question





























    10














    I want to draw the intersection line (curve line) of two functions x^2+y^2+z^2=4 (Zmin= 0) and x^2+y^2=2y in the same coordinate system as follows.



    enter image description here



    I have read pst-3dplot and pst-solides3d but I can only draw the following.



    enter image description here



    MWE



    documentclass[12pt,pstricks,border=15pt]{standalone}

    usepackage{pst-3dplot,pst-solides3d}
    begin{document}
    begin{pspicture}(-5,-5)(5,5)
    pstThreeDCoor

    psImplicitSurface[XMinMax=-2.0 2.0 0.15,YMinMax=-2.0 2.0 0.15,ZMinMax= 0 2.25 0.15,algebraic,ImplFunction=x^2+y^2+z^2-4]%
    end{pspicture}

    end{document}


    Question



    How to plot two surfaces and the intersection curve?










    share|improve this question



























      10












      10








      10


      2





      I want to draw the intersection line (curve line) of two functions x^2+y^2+z^2=4 (Zmin= 0) and x^2+y^2=2y in the same coordinate system as follows.



      enter image description here



      I have read pst-3dplot and pst-solides3d but I can only draw the following.



      enter image description here



      MWE



      documentclass[12pt,pstricks,border=15pt]{standalone}

      usepackage{pst-3dplot,pst-solides3d}
      begin{document}
      begin{pspicture}(-5,-5)(5,5)
      pstThreeDCoor

      psImplicitSurface[XMinMax=-2.0 2.0 0.15,YMinMax=-2.0 2.0 0.15,ZMinMax= 0 2.25 0.15,algebraic,ImplFunction=x^2+y^2+z^2-4]%
      end{pspicture}

      end{document}


      Question



      How to plot two surfaces and the intersection curve?










      share|improve this question















      I want to draw the intersection line (curve line) of two functions x^2+y^2+z^2=4 (Zmin= 0) and x^2+y^2=2y in the same coordinate system as follows.



      enter image description here



      I have read pst-3dplot and pst-solides3d but I can only draw the following.



      enter image description here



      MWE



      documentclass[12pt,pstricks,border=15pt]{standalone}

      usepackage{pst-3dplot,pst-solides3d}
      begin{document}
      begin{pspicture}(-5,-5)(5,5)
      pstThreeDCoor

      psImplicitSurface[XMinMax=-2.0 2.0 0.15,YMinMax=-2.0 2.0 0.15,ZMinMax= 0 2.25 0.15,algebraic,ImplFunction=x^2+y^2+z^2-4]%
      end{pspicture}

      end{document}


      Question



      How to plot two surfaces and the intersection curve?







      pstricks pst-solides3d pst-3dplot






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited yesterday









      God Must Be Crazy

      5,81711039




      5,81711039










      asked yesterday









      chishimotojichishimotoji

      926317




      926317






















          4 Answers
          4






          active

          oldest

          votes


















          11














          What about:



          documentclass{article}
          usepackage{pst-solides3d}

          begin{document}
          begin{pspicture}(-4,-2)(6,6)
          psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
          psset{solidmemory,opacity=0.75}
          axesIIID(0,0,0)(3,3,3)
          psSolid[%
          object=cylindrecreux,
          r=1,
          h=2,
          ngrid=36 36,
          fillcolor=red,
          incolor=orange,
          action=none,
          name=A1](0,1,0)%
          psSolid[%
          object=calottesphere,
          r=2,
          ngrid=36 36,
          action=none,
          name=B1]
          psSolid[object=fusion,
          base=A1 B1,
          action=draw**]
          composeSolid
          % Equation of "Window of Viviani"
          defFunction[algebraic]{g}(t)%
          {sin(t)}%
          {cos(t)+1}%
          {2*sin(1/2*t)}
          psSolid[%
          object=courbe,
          range=0 6.28,
          fillcolor=yellow,
          linewidth=0,
          function=g,
          name=C1,
          opacity=0.9,
          r=0.0125]
          end{pspicture}
          end{document}


          enter image description here






          share|improve this answer























          • Your answer is best selection to show, not to print! That is my thinking.
            – chishimotoji
            5 hours ago





















          11














          A quick TikZ version for comparison.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz,tikz-3dplot}
          begin{document}
          tdplotsetmaincoords{70}{120}
          begin{tikzpicture}[tdplot_main_coords,scale=3,declare function={
          myz(x)=sqrt((1-sin(x))/2);
          mytheta(x)=atan(cot(tdplotmaintheta)/(cos(tdplotmainphi)*cos(x)
          -sin(tdplotmainphi)*sin(x)));}]
          draw[-latex] (-2,0,0) -- (2,0,0) node[pos=1.05]{$x$};
          draw[-latex] (0,0,0) coordinate(O) -- (0,2,0) node[pos=1.1]{$y$};
          draw[-latex] (0,0,0) -- (0,0,2) node[pos=1.1]{$z$};
          begin{scope}
          clip plot[variable=x,domain=tdplotmainphi-180:90,smooth]
          ({cos(x)},{sin(x)},0)--
          plot[variable=x,domain=90:450,smooth,samples=101]
          ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})--
          plot[variable=x,domain=90:tdplotmainphi,smooth] ({cos(x)},{sin(x)},0) -- ++ (0,0,2) --
          ({cos(tdplotmainphi-180)},{sin(tdplotmainphi-180)},2) -- cycle;
          draw[ball color=gray,opacity=0.3,tdplot_screen_coords] (O) circle (1);
          end{scope}
          draw[top color=gray,bottom color=gray!30,middle color=gray!20,shading angle=90,
          fill opacity=0.3] plot[variable=x,domain=90:450,smooth,samples=101]
          ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)});
          shade[top color=gray!50,bottom color=gray!50!black,middle color=gray,shading angle=90,
          fill opacity=0.3] plot[variable=x,domain=90:-64,smooth,samples=101]
          ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})
          --plot[variable=x,domain=-64:90,smooth,samples=101]
          ({0.5*cos(x)},{0.5+0.5*sin(x)},0);
          draw[dashed] plot[variable=x,domain=90:-64,smooth,samples=101]
          ({0.5*cos(x)},{0.5+0.5*sin(x)},0) --
          ({0.5*cos(-64)},{0.5+0.5*sin(-64)},{myz(-64)});
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer



















          • 4




            +1 Beautiful picture!
            – chishimotoji
            yesterday






          • 1




            @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
            – Sebastiano
            23 hours ago






          • 1




            +1 for spending your space, time, energy for drawing this that has become realistic.
            – God Must Be Crazy
            22 hours ago






          • 1




            Your answer is best selection to print on the paper!
            – chishimotoji
            5 hours ago



















          8














          documentclass{article}
          usepackage{pst-solides3d}

          begin{document}

          begin{pspicture}[solidmemory](-4,-2)(6,6)
          psset{viewpoint=30 10 20 rtp2xyz,lightsrc=viewpoint}
          psSolid[object=plan,
          definition=normalpoint,args={0 0 0 [0 0 1]},
          base=-2.5 2.5 -2.5 2.5,
          planmarks,name=plane]
          psset{plan=plane}
          psProjection[object=cercle,args=0 1 1,range=0 360,
          linecolor=red,linestyle=dashed]
          axesIIID(0,0,0)(3,3,3)
          psSolid[
          object=calottesphere,r=2,ngrid=16 18,opacity=0.4,
          linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0]
          end{pspicture}

          end{document}


          enter image description here



          documentclass{article}
          usepackage{pst-solides3d}
          usepackage[a4paper,showframe]{geometry}

          begin{document}
          begin{center}
          begin{pspicture}[solidmemory](-5,-2)(6,6)
          psset{viewpoint=30 80 25 rtp2xyz,lightsrc=viewpoint}
          psSolid[object=plan,
          definition=normalpoint,args={0 0 0 [0 0 1]},
          base=-2.5 2.5 -2.5 2.5,
          planmarks,name=plane]
          psset{plan=plane}
          psProjection[object=cercle,args=0 1 1,range=0 360,
          linecolor=red,linestyle=dashed]
          axesIIID(0,0,0)(3,3,3)
          psSolid[object=calottesphere,r=2,ngrid=64 72,action=none,
          linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0,name=sp]
          psSolid[object=cylindrecreux,h=2.5,r=1,fillcolor=white,action=none,
          ngrid=30 72,incolor=green!50,name=py](0,1,0)
          psSolid[object=fusion,base=sp py,opacity=0.8,grid,action=draw**]
          defFunction[algebraic]{g}(t){sin(t)}{cos(t)+1}{2*sin(1/2*t)}
          psset{object=courbe,fillcolor=red,linecolor=red,
          linewidth=0.1,function=g,r=0,action=draw**}
          psSolid[range=0 1.9]psSolid[range=2.6 3.9]psSolid[range=5 TwoPi]
          end{pspicture}
          end{center}

          end{document}


          enter image description here



          and printed on A4:



          enter image description here






          share|improve this answer























          • Why don't we plot of function directly x^2+y^2+z^2=4? :-)
            – chishimotoji
            yesterday










          • Where is the sense of plotting a sphere with a function? It is already internally defined.
            – Herbert
            yesterday










          • Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
            – chishimotoji
            5 hours ago










          • no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
            – Herbert
            5 hours ago










          • Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
            – chishimotoji
            4 hours ago



















          3














          Hemisphere as a parameterized surface:



          documentclass{article}
          usepackage{pst-solides3d}

          begin{document}
          begin{pspicture}(-4,-2)(6,6)
          psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
          axesIIID(0,0,0)(3,3,3)
          defFunction[algebraic]{hemisphere}(u,v)
          {2*cos(u)*sin(v)}{2*sin(u)*sin(v)}{2*cos(v)}
          psSolid[object=surfaceparametree,
          base=0 2 pi mul 0 pi 2 div,
          fillcolor=red,
          opacity=0.7,
          function=hemisphere,
          linewidth=0.5pslinewidth,
          ngrid=36 36]%
          end{pspicture}
          end{document}


          enter image description here






          share|improve this answer





















            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "85"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f468797%2fhow-to-plot-two-surfaces-and-the-intersection-curve%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            4 Answers
            4






            active

            oldest

            votes








            4 Answers
            4






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            11














            What about:



            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}
            begin{pspicture}(-4,-2)(6,6)
            psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
            psset{solidmemory,opacity=0.75}
            axesIIID(0,0,0)(3,3,3)
            psSolid[%
            object=cylindrecreux,
            r=1,
            h=2,
            ngrid=36 36,
            fillcolor=red,
            incolor=orange,
            action=none,
            name=A1](0,1,0)%
            psSolid[%
            object=calottesphere,
            r=2,
            ngrid=36 36,
            action=none,
            name=B1]
            psSolid[object=fusion,
            base=A1 B1,
            action=draw**]
            composeSolid
            % Equation of "Window of Viviani"
            defFunction[algebraic]{g}(t)%
            {sin(t)}%
            {cos(t)+1}%
            {2*sin(1/2*t)}
            psSolid[%
            object=courbe,
            range=0 6.28,
            fillcolor=yellow,
            linewidth=0,
            function=g,
            name=C1,
            opacity=0.9,
            r=0.0125]
            end{pspicture}
            end{document}


            enter image description here






            share|improve this answer























            • Your answer is best selection to show, not to print! That is my thinking.
              – chishimotoji
              5 hours ago


















            11














            What about:



            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}
            begin{pspicture}(-4,-2)(6,6)
            psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
            psset{solidmemory,opacity=0.75}
            axesIIID(0,0,0)(3,3,3)
            psSolid[%
            object=cylindrecreux,
            r=1,
            h=2,
            ngrid=36 36,
            fillcolor=red,
            incolor=orange,
            action=none,
            name=A1](0,1,0)%
            psSolid[%
            object=calottesphere,
            r=2,
            ngrid=36 36,
            action=none,
            name=B1]
            psSolid[object=fusion,
            base=A1 B1,
            action=draw**]
            composeSolid
            % Equation of "Window of Viviani"
            defFunction[algebraic]{g}(t)%
            {sin(t)}%
            {cos(t)+1}%
            {2*sin(1/2*t)}
            psSolid[%
            object=courbe,
            range=0 6.28,
            fillcolor=yellow,
            linewidth=0,
            function=g,
            name=C1,
            opacity=0.9,
            r=0.0125]
            end{pspicture}
            end{document}


            enter image description here






            share|improve this answer























            • Your answer is best selection to show, not to print! That is my thinking.
              – chishimotoji
              5 hours ago
















            11












            11








            11






            What about:



            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}
            begin{pspicture}(-4,-2)(6,6)
            psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
            psset{solidmemory,opacity=0.75}
            axesIIID(0,0,0)(3,3,3)
            psSolid[%
            object=cylindrecreux,
            r=1,
            h=2,
            ngrid=36 36,
            fillcolor=red,
            incolor=orange,
            action=none,
            name=A1](0,1,0)%
            psSolid[%
            object=calottesphere,
            r=2,
            ngrid=36 36,
            action=none,
            name=B1]
            psSolid[object=fusion,
            base=A1 B1,
            action=draw**]
            composeSolid
            % Equation of "Window of Viviani"
            defFunction[algebraic]{g}(t)%
            {sin(t)}%
            {cos(t)+1}%
            {2*sin(1/2*t)}
            psSolid[%
            object=courbe,
            range=0 6.28,
            fillcolor=yellow,
            linewidth=0,
            function=g,
            name=C1,
            opacity=0.9,
            r=0.0125]
            end{pspicture}
            end{document}


            enter image description here






            share|improve this answer














            What about:



            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}
            begin{pspicture}(-4,-2)(6,6)
            psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
            psset{solidmemory,opacity=0.75}
            axesIIID(0,0,0)(3,3,3)
            psSolid[%
            object=cylindrecreux,
            r=1,
            h=2,
            ngrid=36 36,
            fillcolor=red,
            incolor=orange,
            action=none,
            name=A1](0,1,0)%
            psSolid[%
            object=calottesphere,
            r=2,
            ngrid=36 36,
            action=none,
            name=B1]
            psSolid[object=fusion,
            base=A1 B1,
            action=draw**]
            composeSolid
            % Equation of "Window of Viviani"
            defFunction[algebraic]{g}(t)%
            {sin(t)}%
            {cos(t)+1}%
            {2*sin(1/2*t)}
            psSolid[%
            object=courbe,
            range=0 6.28,
            fillcolor=yellow,
            linewidth=0,
            function=g,
            name=C1,
            opacity=0.9,
            r=0.0125]
            end{pspicture}
            end{document}


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited yesterday

























            answered yesterday









            Jürgen GJürgen G

            1,060214




            1,060214












            • Your answer is best selection to show, not to print! That is my thinking.
              – chishimotoji
              5 hours ago




















            • Your answer is best selection to show, not to print! That is my thinking.
              – chishimotoji
              5 hours ago


















            Your answer is best selection to show, not to print! That is my thinking.
            – chishimotoji
            5 hours ago






            Your answer is best selection to show, not to print! That is my thinking.
            – chishimotoji
            5 hours ago













            11














            A quick TikZ version for comparison.



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz,tikz-3dplot}
            begin{document}
            tdplotsetmaincoords{70}{120}
            begin{tikzpicture}[tdplot_main_coords,scale=3,declare function={
            myz(x)=sqrt((1-sin(x))/2);
            mytheta(x)=atan(cot(tdplotmaintheta)/(cos(tdplotmainphi)*cos(x)
            -sin(tdplotmainphi)*sin(x)));}]
            draw[-latex] (-2,0,0) -- (2,0,0) node[pos=1.05]{$x$};
            draw[-latex] (0,0,0) coordinate(O) -- (0,2,0) node[pos=1.1]{$y$};
            draw[-latex] (0,0,0) -- (0,0,2) node[pos=1.1]{$z$};
            begin{scope}
            clip plot[variable=x,domain=tdplotmainphi-180:90,smooth]
            ({cos(x)},{sin(x)},0)--
            plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})--
            plot[variable=x,domain=90:tdplotmainphi,smooth] ({cos(x)},{sin(x)},0) -- ++ (0,0,2) --
            ({cos(tdplotmainphi-180)},{sin(tdplotmainphi-180)},2) -- cycle;
            draw[ball color=gray,opacity=0.3,tdplot_screen_coords] (O) circle (1);
            end{scope}
            draw[top color=gray,bottom color=gray!30,middle color=gray!20,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)});
            shade[top color=gray!50,bottom color=gray!50!black,middle color=gray,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})
            --plot[variable=x,domain=-64:90,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0);
            draw[dashed] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0) --
            ({0.5*cos(-64)},{0.5+0.5*sin(-64)},{myz(-64)});
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer



















            • 4




              +1 Beautiful picture!
              – chishimotoji
              yesterday






            • 1




              @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
              – Sebastiano
              23 hours ago






            • 1




              +1 for spending your space, time, energy for drawing this that has become realistic.
              – God Must Be Crazy
              22 hours ago






            • 1




              Your answer is best selection to print on the paper!
              – chishimotoji
              5 hours ago
















            11














            A quick TikZ version for comparison.



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz,tikz-3dplot}
            begin{document}
            tdplotsetmaincoords{70}{120}
            begin{tikzpicture}[tdplot_main_coords,scale=3,declare function={
            myz(x)=sqrt((1-sin(x))/2);
            mytheta(x)=atan(cot(tdplotmaintheta)/(cos(tdplotmainphi)*cos(x)
            -sin(tdplotmainphi)*sin(x)));}]
            draw[-latex] (-2,0,0) -- (2,0,0) node[pos=1.05]{$x$};
            draw[-latex] (0,0,0) coordinate(O) -- (0,2,0) node[pos=1.1]{$y$};
            draw[-latex] (0,0,0) -- (0,0,2) node[pos=1.1]{$z$};
            begin{scope}
            clip plot[variable=x,domain=tdplotmainphi-180:90,smooth]
            ({cos(x)},{sin(x)},0)--
            plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})--
            plot[variable=x,domain=90:tdplotmainphi,smooth] ({cos(x)},{sin(x)},0) -- ++ (0,0,2) --
            ({cos(tdplotmainphi-180)},{sin(tdplotmainphi-180)},2) -- cycle;
            draw[ball color=gray,opacity=0.3,tdplot_screen_coords] (O) circle (1);
            end{scope}
            draw[top color=gray,bottom color=gray!30,middle color=gray!20,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)});
            shade[top color=gray!50,bottom color=gray!50!black,middle color=gray,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})
            --plot[variable=x,domain=-64:90,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0);
            draw[dashed] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0) --
            ({0.5*cos(-64)},{0.5+0.5*sin(-64)},{myz(-64)});
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer



















            • 4




              +1 Beautiful picture!
              – chishimotoji
              yesterday






            • 1




              @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
              – Sebastiano
              23 hours ago






            • 1




              +1 for spending your space, time, energy for drawing this that has become realistic.
              – God Must Be Crazy
              22 hours ago






            • 1




              Your answer is best selection to print on the paper!
              – chishimotoji
              5 hours ago














            11












            11








            11






            A quick TikZ version for comparison.



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz,tikz-3dplot}
            begin{document}
            tdplotsetmaincoords{70}{120}
            begin{tikzpicture}[tdplot_main_coords,scale=3,declare function={
            myz(x)=sqrt((1-sin(x))/2);
            mytheta(x)=atan(cot(tdplotmaintheta)/(cos(tdplotmainphi)*cos(x)
            -sin(tdplotmainphi)*sin(x)));}]
            draw[-latex] (-2,0,0) -- (2,0,0) node[pos=1.05]{$x$};
            draw[-latex] (0,0,0) coordinate(O) -- (0,2,0) node[pos=1.1]{$y$};
            draw[-latex] (0,0,0) -- (0,0,2) node[pos=1.1]{$z$};
            begin{scope}
            clip plot[variable=x,domain=tdplotmainphi-180:90,smooth]
            ({cos(x)},{sin(x)},0)--
            plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})--
            plot[variable=x,domain=90:tdplotmainphi,smooth] ({cos(x)},{sin(x)},0) -- ++ (0,0,2) --
            ({cos(tdplotmainphi-180)},{sin(tdplotmainphi-180)},2) -- cycle;
            draw[ball color=gray,opacity=0.3,tdplot_screen_coords] (O) circle (1);
            end{scope}
            draw[top color=gray,bottom color=gray!30,middle color=gray!20,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)});
            shade[top color=gray!50,bottom color=gray!50!black,middle color=gray,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})
            --plot[variable=x,domain=-64:90,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0);
            draw[dashed] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0) --
            ({0.5*cos(-64)},{0.5+0.5*sin(-64)},{myz(-64)});
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer














            A quick TikZ version for comparison.



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz,tikz-3dplot}
            begin{document}
            tdplotsetmaincoords{70}{120}
            begin{tikzpicture}[tdplot_main_coords,scale=3,declare function={
            myz(x)=sqrt((1-sin(x))/2);
            mytheta(x)=atan(cot(tdplotmaintheta)/(cos(tdplotmainphi)*cos(x)
            -sin(tdplotmainphi)*sin(x)));}]
            draw[-latex] (-2,0,0) -- (2,0,0) node[pos=1.05]{$x$};
            draw[-latex] (0,0,0) coordinate(O) -- (0,2,0) node[pos=1.1]{$y$};
            draw[-latex] (0,0,0) -- (0,0,2) node[pos=1.1]{$z$};
            begin{scope}
            clip plot[variable=x,domain=tdplotmainphi-180:90,smooth]
            ({cos(x)},{sin(x)},0)--
            plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})--
            plot[variable=x,domain=90:tdplotmainphi,smooth] ({cos(x)},{sin(x)},0) -- ++ (0,0,2) --
            ({cos(tdplotmainphi-180)},{sin(tdplotmainphi-180)},2) -- cycle;
            draw[ball color=gray,opacity=0.3,tdplot_screen_coords] (O) circle (1);
            end{scope}
            draw[top color=gray,bottom color=gray!30,middle color=gray!20,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:450,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)});
            shade[top color=gray!50,bottom color=gray!50!black,middle color=gray,shading angle=90,
            fill opacity=0.3] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},{myz(x)})
            --plot[variable=x,domain=-64:90,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0);
            draw[dashed] plot[variable=x,domain=90:-64,smooth,samples=101]
            ({0.5*cos(x)},{0.5+0.5*sin(x)},0) --
            ({0.5*cos(-64)},{0.5+0.5*sin(-64)},{myz(-64)});
            end{tikzpicture}
            end{document}


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 23 hours ago

























            answered yesterday









            marmotmarmot

            89.2k4102193




            89.2k4102193








            • 4




              +1 Beautiful picture!
              – chishimotoji
              yesterday






            • 1




              @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
              – Sebastiano
              23 hours ago






            • 1




              +1 for spending your space, time, energy for drawing this that has become realistic.
              – God Must Be Crazy
              22 hours ago






            • 1




              Your answer is best selection to print on the paper!
              – chishimotoji
              5 hours ago














            • 4




              +1 Beautiful picture!
              – chishimotoji
              yesterday






            • 1




              @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
              – Sebastiano
              23 hours ago






            • 1




              +1 for spending your space, time, energy for drawing this that has become realistic.
              – God Must Be Crazy
              22 hours ago






            • 1




              Your answer is best selection to print on the paper!
              – chishimotoji
              5 hours ago








            4




            4




            +1 Beautiful picture!
            – chishimotoji
            yesterday




            +1 Beautiful picture!
            – chishimotoji
            yesterday




            1




            1




            @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
            – Sebastiano
            23 hours ago




            @GodMustBeCrazy I imagined it was just a matter of time :-). We still need the dotted part. However spectacular everything.
            – Sebastiano
            23 hours ago




            1




            1




            +1 for spending your space, time, energy for drawing this that has become realistic.
            – God Must Be Crazy
            22 hours ago




            +1 for spending your space, time, energy for drawing this that has become realistic.
            – God Must Be Crazy
            22 hours ago




            1




            1




            Your answer is best selection to print on the paper!
            – chishimotoji
            5 hours ago




            Your answer is best selection to print on the paper!
            – chishimotoji
            5 hours ago











            8














            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}

            begin{pspicture}[solidmemory](-4,-2)(6,6)
            psset{viewpoint=30 10 20 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[
            object=calottesphere,r=2,ngrid=16 18,opacity=0.4,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0]
            end{pspicture}

            end{document}


            enter image description here



            documentclass{article}
            usepackage{pst-solides3d}
            usepackage[a4paper,showframe]{geometry}

            begin{document}
            begin{center}
            begin{pspicture}[solidmemory](-5,-2)(6,6)
            psset{viewpoint=30 80 25 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[object=calottesphere,r=2,ngrid=64 72,action=none,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0,name=sp]
            psSolid[object=cylindrecreux,h=2.5,r=1,fillcolor=white,action=none,
            ngrid=30 72,incolor=green!50,name=py](0,1,0)
            psSolid[object=fusion,base=sp py,opacity=0.8,grid,action=draw**]
            defFunction[algebraic]{g}(t){sin(t)}{cos(t)+1}{2*sin(1/2*t)}
            psset{object=courbe,fillcolor=red,linecolor=red,
            linewidth=0.1,function=g,r=0,action=draw**}
            psSolid[range=0 1.9]psSolid[range=2.6 3.9]psSolid[range=5 TwoPi]
            end{pspicture}
            end{center}

            end{document}


            enter image description here



            and printed on A4:



            enter image description here






            share|improve this answer























            • Why don't we plot of function directly x^2+y^2+z^2=4? :-)
              – chishimotoji
              yesterday










            • Where is the sense of plotting a sphere with a function? It is already internally defined.
              – Herbert
              yesterday










            • Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
              – chishimotoji
              5 hours ago










            • no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
              – Herbert
              5 hours ago










            • Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
              – chishimotoji
              4 hours ago
















            8














            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}

            begin{pspicture}[solidmemory](-4,-2)(6,6)
            psset{viewpoint=30 10 20 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[
            object=calottesphere,r=2,ngrid=16 18,opacity=0.4,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0]
            end{pspicture}

            end{document}


            enter image description here



            documentclass{article}
            usepackage{pst-solides3d}
            usepackage[a4paper,showframe]{geometry}

            begin{document}
            begin{center}
            begin{pspicture}[solidmemory](-5,-2)(6,6)
            psset{viewpoint=30 80 25 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[object=calottesphere,r=2,ngrid=64 72,action=none,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0,name=sp]
            psSolid[object=cylindrecreux,h=2.5,r=1,fillcolor=white,action=none,
            ngrid=30 72,incolor=green!50,name=py](0,1,0)
            psSolid[object=fusion,base=sp py,opacity=0.8,grid,action=draw**]
            defFunction[algebraic]{g}(t){sin(t)}{cos(t)+1}{2*sin(1/2*t)}
            psset{object=courbe,fillcolor=red,linecolor=red,
            linewidth=0.1,function=g,r=0,action=draw**}
            psSolid[range=0 1.9]psSolid[range=2.6 3.9]psSolid[range=5 TwoPi]
            end{pspicture}
            end{center}

            end{document}


            enter image description here



            and printed on A4:



            enter image description here






            share|improve this answer























            • Why don't we plot of function directly x^2+y^2+z^2=4? :-)
              – chishimotoji
              yesterday










            • Where is the sense of plotting a sphere with a function? It is already internally defined.
              – Herbert
              yesterday










            • Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
              – chishimotoji
              5 hours ago










            • no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
              – Herbert
              5 hours ago










            • Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
              – chishimotoji
              4 hours ago














            8












            8








            8






            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}

            begin{pspicture}[solidmemory](-4,-2)(6,6)
            psset{viewpoint=30 10 20 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[
            object=calottesphere,r=2,ngrid=16 18,opacity=0.4,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0]
            end{pspicture}

            end{document}


            enter image description here



            documentclass{article}
            usepackage{pst-solides3d}
            usepackage[a4paper,showframe]{geometry}

            begin{document}
            begin{center}
            begin{pspicture}[solidmemory](-5,-2)(6,6)
            psset{viewpoint=30 80 25 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[object=calottesphere,r=2,ngrid=64 72,action=none,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0,name=sp]
            psSolid[object=cylindrecreux,h=2.5,r=1,fillcolor=white,action=none,
            ngrid=30 72,incolor=green!50,name=py](0,1,0)
            psSolid[object=fusion,base=sp py,opacity=0.8,grid,action=draw**]
            defFunction[algebraic]{g}(t){sin(t)}{cos(t)+1}{2*sin(1/2*t)}
            psset{object=courbe,fillcolor=red,linecolor=red,
            linewidth=0.1,function=g,r=0,action=draw**}
            psSolid[range=0 1.9]psSolid[range=2.6 3.9]psSolid[range=5 TwoPi]
            end{pspicture}
            end{center}

            end{document}


            enter image description here



            and printed on A4:



            enter image description here






            share|improve this answer














            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}

            begin{pspicture}[solidmemory](-4,-2)(6,6)
            psset{viewpoint=30 10 20 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[
            object=calottesphere,r=2,ngrid=16 18,opacity=0.4,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0]
            end{pspicture}

            end{document}


            enter image description here



            documentclass{article}
            usepackage{pst-solides3d}
            usepackage[a4paper,showframe]{geometry}

            begin{document}
            begin{center}
            begin{pspicture}[solidmemory](-5,-2)(6,6)
            psset{viewpoint=30 80 25 rtp2xyz,lightsrc=viewpoint}
            psSolid[object=plan,
            definition=normalpoint,args={0 0 0 [0 0 1]},
            base=-2.5 2.5 -2.5 2.5,
            planmarks,name=plane]
            psset{plan=plane}
            psProjection[object=cercle,args=0 1 1,range=0 360,
            linecolor=red,linestyle=dashed]
            axesIIID(0,0,0)(3,3,3)
            psSolid[object=calottesphere,r=2,ngrid=64 72,action=none,
            linewidth=0.01pt,fillcolor=blue!60,theta=90,phi=0,name=sp]
            psSolid[object=cylindrecreux,h=2.5,r=1,fillcolor=white,action=none,
            ngrid=30 72,incolor=green!50,name=py](0,1,0)
            psSolid[object=fusion,base=sp py,opacity=0.8,grid,action=draw**]
            defFunction[algebraic]{g}(t){sin(t)}{cos(t)+1}{2*sin(1/2*t)}
            psset{object=courbe,fillcolor=red,linecolor=red,
            linewidth=0.1,function=g,r=0,action=draw**}
            psSolid[range=0 1.9]psSolid[range=2.6 3.9]psSolid[range=5 TwoPi]
            end{pspicture}
            end{center}

            end{document}


            enter image description here



            and printed on A4:



            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 4 hours ago

























            answered yesterday









            HerbertHerbert

            270k24408717




            270k24408717












            • Why don't we plot of function directly x^2+y^2+z^2=4? :-)
              – chishimotoji
              yesterday










            • Where is the sense of plotting a sphere with a function? It is already internally defined.
              – Herbert
              yesterday










            • Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
              – chishimotoji
              5 hours ago










            • no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
              – Herbert
              5 hours ago










            • Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
              – chishimotoji
              4 hours ago


















            • Why don't we plot of function directly x^2+y^2+z^2=4? :-)
              – chishimotoji
              yesterday










            • Where is the sense of plotting a sphere with a function? It is already internally defined.
              – Herbert
              yesterday










            • Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
              – chishimotoji
              5 hours ago










            • no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
              – Herbert
              5 hours ago










            • Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
              – chishimotoji
              4 hours ago
















            Why don't we plot of function directly x^2+y^2+z^2=4? :-)
            – chishimotoji
            yesterday




            Why don't we plot of function directly x^2+y^2+z^2=4? :-)
            – chishimotoji
            yesterday












            Where is the sense of plotting a sphere with a function? It is already internally defined.
            – Herbert
            yesterday




            Where is the sense of plotting a sphere with a function? It is already internally defined.
            – Herbert
            yesterday












            Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
            – chishimotoji
            5 hours ago




            Where are the previous questions? :-)). What do you think if we print it on the A4 paper? Truly, marmot's answer is best selection to print!
            – chishimotoji
            5 hours ago












            no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
            – Herbert
            5 hours ago




            no, TikZ cannot really handle 3d sufaces. And if you want to print in grayscales then use gray as color. Where is the problem??
            – Herbert
            5 hours ago












            Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
            – chishimotoji
            4 hours ago




            Can you illustrate it if it is printed on the A4 paper?(necessary). I do not your picture can be printed on the A4 paper clearly. P/S: I try to find on PSTricks site but there are no any examples about several things at least for me.
            – chishimotoji
            4 hours ago











            3














            Hemisphere as a parameterized surface:



            documentclass{article}
            usepackage{pst-solides3d}

            begin{document}
            begin{pspicture}(-4,-2)(6,6)
            psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
            axesIIID(0,0,0)(3,3,3)
            defFunction[algebraic]{hemisphere}(u,v)
            {2*cos(u)*sin(v)}{2*sin(u)*sin(v)}{2*cos(v)}
            psSolid[object=surfaceparametree,
            base=0 2 pi mul 0 pi 2 div,
            fillcolor=red,
            opacity=0.7,
            function=hemisphere,
            linewidth=0.5pslinewidth,
            ngrid=36 36]%
            end{pspicture}
            end{document}


            enter image description here






            share|improve this answer


























              3














              Hemisphere as a parameterized surface:



              documentclass{article}
              usepackage{pst-solides3d}

              begin{document}
              begin{pspicture}(-4,-2)(6,6)
              psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
              axesIIID(0,0,0)(3,3,3)
              defFunction[algebraic]{hemisphere}(u,v)
              {2*cos(u)*sin(v)}{2*sin(u)*sin(v)}{2*cos(v)}
              psSolid[object=surfaceparametree,
              base=0 2 pi mul 0 pi 2 div,
              fillcolor=red,
              opacity=0.7,
              function=hemisphere,
              linewidth=0.5pslinewidth,
              ngrid=36 36]%
              end{pspicture}
              end{document}


              enter image description here






              share|improve this answer
























                3












                3








                3






                Hemisphere as a parameterized surface:



                documentclass{article}
                usepackage{pst-solides3d}

                begin{document}
                begin{pspicture}(-4,-2)(6,6)
                psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
                axesIIID(0,0,0)(3,3,3)
                defFunction[algebraic]{hemisphere}(u,v)
                {2*cos(u)*sin(v)}{2*sin(u)*sin(v)}{2*cos(v)}
                psSolid[object=surfaceparametree,
                base=0 2 pi mul 0 pi 2 div,
                fillcolor=red,
                opacity=0.7,
                function=hemisphere,
                linewidth=0.5pslinewidth,
                ngrid=36 36]%
                end{pspicture}
                end{document}


                enter image description here






                share|improve this answer












                Hemisphere as a parameterized surface:



                documentclass{article}
                usepackage{pst-solides3d}

                begin{document}
                begin{pspicture}(-4,-2)(6,6)
                psset{viewpoint=30 40 40 rtp2xyz,lightsrc=viewpoint}
                axesIIID(0,0,0)(3,3,3)
                defFunction[algebraic]{hemisphere}(u,v)
                {2*cos(u)*sin(v)}{2*sin(u)*sin(v)}{2*cos(v)}
                psSolid[object=surfaceparametree,
                base=0 2 pi mul 0 pi 2 div,
                fillcolor=red,
                opacity=0.7,
                function=hemisphere,
                linewidth=0.5pslinewidth,
                ngrid=36 36]%
                end{pspicture}
                end{document}


                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered yesterday









                Jürgen GJürgen G

                1,060214




                1,060214






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f468797%2fhow-to-plot-two-surfaces-and-the-intersection-curve%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8