Kolmogorov extension theorem for measures on the space of continuous functions
In a text I am reading occurs the following:
One has a family of probability measures $(P_T)_{Tgeq 0}$ such that $P_T$ is a measure on the measurable space $(C([0,T],Bbb R^d), mathcal B (C([0,T],Bbb R^d)) )$.
It is stated that consistency of the family $(P_T)_{Tgeq 0}$ is yielding a measure $P$ on $C([0,infty),Bbb R^d)$.
I think consistency means if we take $pi^S_T: C([0,S],Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$, then for every $Sgeq T$ we have $P_T = P_S circ (pi_T^S)^{-1}$.
P seems to satisfy $P_T = Pcirc(pi_T)^{-1}$, where $pi_T: C([0,infty),Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$
Is this a trivial fact? My first thought was to apply the Kolmogorov extension theorem but I did not come far enough with it.
probability-theory measure-theory stochastic-processes
add a comment |
In a text I am reading occurs the following:
One has a family of probability measures $(P_T)_{Tgeq 0}$ such that $P_T$ is a measure on the measurable space $(C([0,T],Bbb R^d), mathcal B (C([0,T],Bbb R^d)) )$.
It is stated that consistency of the family $(P_T)_{Tgeq 0}$ is yielding a measure $P$ on $C([0,infty),Bbb R^d)$.
I think consistency means if we take $pi^S_T: C([0,S],Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$, then for every $Sgeq T$ we have $P_T = P_S circ (pi_T^S)^{-1}$.
P seems to satisfy $P_T = Pcirc(pi_T)^{-1}$, where $pi_T: C([0,infty),Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$
Is this a trivial fact? My first thought was to apply the Kolmogorov extension theorem but I did not come far enough with it.
probability-theory measure-theory stochastic-processes
add a comment |
In a text I am reading occurs the following:
One has a family of probability measures $(P_T)_{Tgeq 0}$ such that $P_T$ is a measure on the measurable space $(C([0,T],Bbb R^d), mathcal B (C([0,T],Bbb R^d)) )$.
It is stated that consistency of the family $(P_T)_{Tgeq 0}$ is yielding a measure $P$ on $C([0,infty),Bbb R^d)$.
I think consistency means if we take $pi^S_T: C([0,S],Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$, then for every $Sgeq T$ we have $P_T = P_S circ (pi_T^S)^{-1}$.
P seems to satisfy $P_T = Pcirc(pi_T)^{-1}$, where $pi_T: C([0,infty),Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$
Is this a trivial fact? My first thought was to apply the Kolmogorov extension theorem but I did not come far enough with it.
probability-theory measure-theory stochastic-processes
In a text I am reading occurs the following:
One has a family of probability measures $(P_T)_{Tgeq 0}$ such that $P_T$ is a measure on the measurable space $(C([0,T],Bbb R^d), mathcal B (C([0,T],Bbb R^d)) )$.
It is stated that consistency of the family $(P_T)_{Tgeq 0}$ is yielding a measure $P$ on $C([0,infty),Bbb R^d)$.
I think consistency means if we take $pi^S_T: C([0,S],Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$, then for every $Sgeq T$ we have $P_T = P_S circ (pi_T^S)^{-1}$.
P seems to satisfy $P_T = Pcirc(pi_T)^{-1}$, where $pi_T: C([0,infty),Bbb R^d) to C([0,T],Bbb R^d)$,$fmapsto fvert_{[0,T]}$
Is this a trivial fact? My first thought was to apply the Kolmogorov extension theorem but I did not come far enough with it.
probability-theory measure-theory stochastic-processes
probability-theory measure-theory stochastic-processes
edited Jan 4 at 16:18
Falrach
asked Jan 4 at 15:11
FalrachFalrach
1,648223
1,648223
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061743%2fkolmogorov-extension-theorem-for-measures-on-the-space-of-continuous-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061743%2fkolmogorov-extension-theorem-for-measures-on-the-space-of-continuous-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown