There exists a linear operator with no proper invariant subspaces












5












$begingroup$


Let $A$ be a bounded operator on a Hilbert space $H$ with two invariant subspaces $M$ and $N$ s.t. $N subset M$, dim$(M cap N^{perp})> 1$, and have no invariant subspaces between $N$ and $M$. Then, show that, there exists an operator $B$ on $H$ which has no proper invariant subspace.



All I want a hint for constructing $B$ with the help of $A$ and given conditions, even a little hint will be appreciated. Thanks in advance.










share|cite|improve this question









$endgroup$

















    5












    $begingroup$


    Let $A$ be a bounded operator on a Hilbert space $H$ with two invariant subspaces $M$ and $N$ s.t. $N subset M$, dim$(M cap N^{perp})> 1$, and have no invariant subspaces between $N$ and $M$. Then, show that, there exists an operator $B$ on $H$ which has no proper invariant subspace.



    All I want a hint for constructing $B$ with the help of $A$ and given conditions, even a little hint will be appreciated. Thanks in advance.










    share|cite|improve this question









    $endgroup$















      5












      5








      5





      $begingroup$


      Let $A$ be a bounded operator on a Hilbert space $H$ with two invariant subspaces $M$ and $N$ s.t. $N subset M$, dim$(M cap N^{perp})> 1$, and have no invariant subspaces between $N$ and $M$. Then, show that, there exists an operator $B$ on $H$ which has no proper invariant subspace.



      All I want a hint for constructing $B$ with the help of $A$ and given conditions, even a little hint will be appreciated. Thanks in advance.










      share|cite|improve this question









      $endgroup$




      Let $A$ be a bounded operator on a Hilbert space $H$ with two invariant subspaces $M$ and $N$ s.t. $N subset M$, dim$(M cap N^{perp})> 1$, and have no invariant subspaces between $N$ and $M$. Then, show that, there exists an operator $B$ on $H$ which has no proper invariant subspace.



      All I want a hint for constructing $B$ with the help of $A$ and given conditions, even a little hint will be appreciated. Thanks in advance.







      linear-algebra functional-analysis operator-algebras






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 at 11:38









      splifesplife

      261




      261






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          The hint is to think about the invariant subspaces of $A$ the lie in $Mcap N^perp$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066067%2fthere-exists-a-linear-operator-with-no-proper-invariant-subspaces%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            The hint is to think about the invariant subspaces of $A$ the lie in $Mcap N^perp$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              The hint is to think about the invariant subspaces of $A$ the lie in $Mcap N^perp$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                The hint is to think about the invariant subspaces of $A$ the lie in $Mcap N^perp$.






                share|cite|improve this answer









                $endgroup$



                The hint is to think about the invariant subspaces of $A$ the lie in $Mcap N^perp$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 8 at 13:53









                Martin ArgeramiMartin Argerami

                126k1182180




                126k1182180






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066067%2fthere-exists-a-linear-operator-with-no-proper-invariant-subspaces%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8