Napoleon-like theorem concerning squares erected on sides of midpoint polygon of octogon
Given an arbitrary octagon, construct it's midpoint polygon(the midpoint formed by the midpoints of the sides). Erect squares on the sides of the midpoint polygon, all inwards or all outwards. Consider the four segments, each connecting the centroids of two squares corresponding to opposite sides of the midpoint polygon.
The midpoint of these segments form a square.
I distinctly remember seeing this theorem in some geometry article, but I have been unable to find that article. I believe it was attributed to Van Aubel, however I am not too sure. I want to find the source of this theorem because I have found a rather powerful generalisation and I want to revisit that article.
Does anyone find this theorem familiar?
geometry reference-request complex-numbers euclidean-geometry geometric-transformation
|
show 2 more comments
Given an arbitrary octagon, construct it's midpoint polygon(the midpoint formed by the midpoints of the sides). Erect squares on the sides of the midpoint polygon, all inwards or all outwards. Consider the four segments, each connecting the centroids of two squares corresponding to opposite sides of the midpoint polygon.
The midpoint of these segments form a square.
I distinctly remember seeing this theorem in some geometry article, but I have been unable to find that article. I believe it was attributed to Van Aubel, however I am not too sure. I want to find the source of this theorem because I have found a rather powerful generalisation and I want to revisit that article.
Does anyone find this theorem familiar?
geometry reference-request complex-numbers euclidean-geometry geometric-transformation
Branko Grünbaum (RIP 2018) presented results of this type in a graduate course at the University of Washington many years ago. I'm not sure if they were published outside of lecture notes. There's a wonderful general result that goes something like this: Given an arbitrary $n$-gon, consider the various regular $(n/k)$-gons, defined as having vertices $(cos 2pi i k/n,sin2pi i k/n)$ for $i=0, 1, ldots, n-1$. (These include "starry" and "multiply-traced" figures, as well as the "dot" ($k=0$).) [continued]
– Blue
2 days ago
[continuation] Erecting an $(n/k)$-gon on the sides of the $n$-gon and joining centroids gives a new $n$-gon; erecting some other $(n/k)$-gon on the new sides gives another $n$-gon; etc. Iterating for all-but-one of $(n/k)$-gons, the final polygon is the remaining $(n/k)$-gon. For an $8$-gon, the $(n/k)$-gons are the dot ($k=0$), the regular octagon ($k=1$), the doubly-traced square ($k=2$), "starry octagon" ($k=3$), quad-traced segment ($k=4$, whose derived polygon is a midpoint polygon), and "reverse-direction" versions. Similar to what you have, except for the "opposite sides" thing.
– Blue
2 days ago
@Blue, aren't you describing the Petr-Douglas-Neumann Theorem? ( en.wikipedia.org/wiki/Petr-Douglas-Neumann_theorem )
– Tanny Sieben
2 days ago
Ah, yes. That seems to be it.
– Blue
2 days ago
Interestingly, the "opposite sides" thing seems attributable to a common alternative interpretation of $(n/k)$-gon. Rather than starting at $(1,0)$ of a regular "unit" $n$-gon and forming a single (possibly multiply-traced) path by jumping every $k$ vertices, possibly excluding some vertices, we connect every vertex of the $n$ gon to the vertex/vertices $k$ jumps ahead/behind. So, an $(8/4)$-gon would consist of four individual segments (perhaps best thought of as double-traced segments) instead one octo-traced segment. But your figure arguably also uses octo-traced segments. Intriguing.
– Blue
2 days ago
|
show 2 more comments
Given an arbitrary octagon, construct it's midpoint polygon(the midpoint formed by the midpoints of the sides). Erect squares on the sides of the midpoint polygon, all inwards or all outwards. Consider the four segments, each connecting the centroids of two squares corresponding to opposite sides of the midpoint polygon.
The midpoint of these segments form a square.
I distinctly remember seeing this theorem in some geometry article, but I have been unable to find that article. I believe it was attributed to Van Aubel, however I am not too sure. I want to find the source of this theorem because I have found a rather powerful generalisation and I want to revisit that article.
Does anyone find this theorem familiar?
geometry reference-request complex-numbers euclidean-geometry geometric-transformation
Given an arbitrary octagon, construct it's midpoint polygon(the midpoint formed by the midpoints of the sides). Erect squares on the sides of the midpoint polygon, all inwards or all outwards. Consider the four segments, each connecting the centroids of two squares corresponding to opposite sides of the midpoint polygon.
The midpoint of these segments form a square.
I distinctly remember seeing this theorem in some geometry article, but I have been unable to find that article. I believe it was attributed to Van Aubel, however I am not too sure. I want to find the source of this theorem because I have found a rather powerful generalisation and I want to revisit that article.
Does anyone find this theorem familiar?
geometry reference-request complex-numbers euclidean-geometry geometric-transformation
geometry reference-request complex-numbers euclidean-geometry geometric-transformation
edited 6 hours ago
greedoid
38.2k114797
38.2k114797
asked 2 days ago
Tanny Sieben
32118
32118
Branko Grünbaum (RIP 2018) presented results of this type in a graduate course at the University of Washington many years ago. I'm not sure if they were published outside of lecture notes. There's a wonderful general result that goes something like this: Given an arbitrary $n$-gon, consider the various regular $(n/k)$-gons, defined as having vertices $(cos 2pi i k/n,sin2pi i k/n)$ for $i=0, 1, ldots, n-1$. (These include "starry" and "multiply-traced" figures, as well as the "dot" ($k=0$).) [continued]
– Blue
2 days ago
[continuation] Erecting an $(n/k)$-gon on the sides of the $n$-gon and joining centroids gives a new $n$-gon; erecting some other $(n/k)$-gon on the new sides gives another $n$-gon; etc. Iterating for all-but-one of $(n/k)$-gons, the final polygon is the remaining $(n/k)$-gon. For an $8$-gon, the $(n/k)$-gons are the dot ($k=0$), the regular octagon ($k=1$), the doubly-traced square ($k=2$), "starry octagon" ($k=3$), quad-traced segment ($k=4$, whose derived polygon is a midpoint polygon), and "reverse-direction" versions. Similar to what you have, except for the "opposite sides" thing.
– Blue
2 days ago
@Blue, aren't you describing the Petr-Douglas-Neumann Theorem? ( en.wikipedia.org/wiki/Petr-Douglas-Neumann_theorem )
– Tanny Sieben
2 days ago
Ah, yes. That seems to be it.
– Blue
2 days ago
Interestingly, the "opposite sides" thing seems attributable to a common alternative interpretation of $(n/k)$-gon. Rather than starting at $(1,0)$ of a regular "unit" $n$-gon and forming a single (possibly multiply-traced) path by jumping every $k$ vertices, possibly excluding some vertices, we connect every vertex of the $n$ gon to the vertex/vertices $k$ jumps ahead/behind. So, an $(8/4)$-gon would consist of four individual segments (perhaps best thought of as double-traced segments) instead one octo-traced segment. But your figure arguably also uses octo-traced segments. Intriguing.
– Blue
2 days ago
|
show 2 more comments
Branko Grünbaum (RIP 2018) presented results of this type in a graduate course at the University of Washington many years ago. I'm not sure if they were published outside of lecture notes. There's a wonderful general result that goes something like this: Given an arbitrary $n$-gon, consider the various regular $(n/k)$-gons, defined as having vertices $(cos 2pi i k/n,sin2pi i k/n)$ for $i=0, 1, ldots, n-1$. (These include "starry" and "multiply-traced" figures, as well as the "dot" ($k=0$).) [continued]
– Blue
2 days ago
[continuation] Erecting an $(n/k)$-gon on the sides of the $n$-gon and joining centroids gives a new $n$-gon; erecting some other $(n/k)$-gon on the new sides gives another $n$-gon; etc. Iterating for all-but-one of $(n/k)$-gons, the final polygon is the remaining $(n/k)$-gon. For an $8$-gon, the $(n/k)$-gons are the dot ($k=0$), the regular octagon ($k=1$), the doubly-traced square ($k=2$), "starry octagon" ($k=3$), quad-traced segment ($k=4$, whose derived polygon is a midpoint polygon), and "reverse-direction" versions. Similar to what you have, except for the "opposite sides" thing.
– Blue
2 days ago
@Blue, aren't you describing the Petr-Douglas-Neumann Theorem? ( en.wikipedia.org/wiki/Petr-Douglas-Neumann_theorem )
– Tanny Sieben
2 days ago
Ah, yes. That seems to be it.
– Blue
2 days ago
Interestingly, the "opposite sides" thing seems attributable to a common alternative interpretation of $(n/k)$-gon. Rather than starting at $(1,0)$ of a regular "unit" $n$-gon and forming a single (possibly multiply-traced) path by jumping every $k$ vertices, possibly excluding some vertices, we connect every vertex of the $n$ gon to the vertex/vertices $k$ jumps ahead/behind. So, an $(8/4)$-gon would consist of four individual segments (perhaps best thought of as double-traced segments) instead one octo-traced segment. But your figure arguably also uses octo-traced segments. Intriguing.
– Blue
2 days ago
Branko Grünbaum (RIP 2018) presented results of this type in a graduate course at the University of Washington many years ago. I'm not sure if they were published outside of lecture notes. There's a wonderful general result that goes something like this: Given an arbitrary $n$-gon, consider the various regular $(n/k)$-gons, defined as having vertices $(cos 2pi i k/n,sin2pi i k/n)$ for $i=0, 1, ldots, n-1$. (These include "starry" and "multiply-traced" figures, as well as the "dot" ($k=0$).) [continued]
– Blue
2 days ago
Branko Grünbaum (RIP 2018) presented results of this type in a graduate course at the University of Washington many years ago. I'm not sure if they were published outside of lecture notes. There's a wonderful general result that goes something like this: Given an arbitrary $n$-gon, consider the various regular $(n/k)$-gons, defined as having vertices $(cos 2pi i k/n,sin2pi i k/n)$ for $i=0, 1, ldots, n-1$. (These include "starry" and "multiply-traced" figures, as well as the "dot" ($k=0$).) [continued]
– Blue
2 days ago
[continuation] Erecting an $(n/k)$-gon on the sides of the $n$-gon and joining centroids gives a new $n$-gon; erecting some other $(n/k)$-gon on the new sides gives another $n$-gon; etc. Iterating for all-but-one of $(n/k)$-gons, the final polygon is the remaining $(n/k)$-gon. For an $8$-gon, the $(n/k)$-gons are the dot ($k=0$), the regular octagon ($k=1$), the doubly-traced square ($k=2$), "starry octagon" ($k=3$), quad-traced segment ($k=4$, whose derived polygon is a midpoint polygon), and "reverse-direction" versions. Similar to what you have, except for the "opposite sides" thing.
– Blue
2 days ago
[continuation] Erecting an $(n/k)$-gon on the sides of the $n$-gon and joining centroids gives a new $n$-gon; erecting some other $(n/k)$-gon on the new sides gives another $n$-gon; etc. Iterating for all-but-one of $(n/k)$-gons, the final polygon is the remaining $(n/k)$-gon. For an $8$-gon, the $(n/k)$-gons are the dot ($k=0$), the regular octagon ($k=1$), the doubly-traced square ($k=2$), "starry octagon" ($k=3$), quad-traced segment ($k=4$, whose derived polygon is a midpoint polygon), and "reverse-direction" versions. Similar to what you have, except for the "opposite sides" thing.
– Blue
2 days ago
@Blue, aren't you describing the Petr-Douglas-Neumann Theorem? ( en.wikipedia.org/wiki/Petr-Douglas-Neumann_theorem )
– Tanny Sieben
2 days ago
@Blue, aren't you describing the Petr-Douglas-Neumann Theorem? ( en.wikipedia.org/wiki/Petr-Douglas-Neumann_theorem )
– Tanny Sieben
2 days ago
Ah, yes. That seems to be it.
– Blue
2 days ago
Ah, yes. That seems to be it.
– Blue
2 days ago
Interestingly, the "opposite sides" thing seems attributable to a common alternative interpretation of $(n/k)$-gon. Rather than starting at $(1,0)$ of a regular "unit" $n$-gon and forming a single (possibly multiply-traced) path by jumping every $k$ vertices, possibly excluding some vertices, we connect every vertex of the $n$ gon to the vertex/vertices $k$ jumps ahead/behind. So, an $(8/4)$-gon would consist of four individual segments (perhaps best thought of as double-traced segments) instead one octo-traced segment. But your figure arguably also uses octo-traced segments. Intriguing.
– Blue
2 days ago
Interestingly, the "opposite sides" thing seems attributable to a common alternative interpretation of $(n/k)$-gon. Rather than starting at $(1,0)$ of a regular "unit" $n$-gon and forming a single (possibly multiply-traced) path by jumping every $k$ vertices, possibly excluding some vertices, we connect every vertex of the $n$ gon to the vertex/vertices $k$ jumps ahead/behind. So, an $(8/4)$-gon would consist of four individual segments (perhaps best thought of as double-traced segments) instead one octo-traced segment. But your figure arguably also uses octo-traced segments. Intriguing.
– Blue
2 days ago
|
show 2 more comments
1 Answer
1
active
oldest
votes
I have a lenghty complex-vector-computational solution. The main idea is in a following lemma.
Lemma: If $ABCD$ is a square with center $S$, then $$ S = {1over 2}(B-A)i+{1over 2}(A+B)$$
where letters represent complex numbers of coresponding points (with the same name).
So we get 8 centers and then calculate all $4$ midpoints of those segments. Say we have octagon $ABCDEFGH$, then those midpoints (if we suppose that $A+B+C+D+E+F+G+H =0$) are:
$$ M_1 = {1over 4}Big[(D+H-B-F)i+(A+E-C-G)Big]=-M_3$$
$$ M_2 = {1over 4}Big[(A+E-C-G)i+(B+F-D-H)Big] =-M_4$$
Now it is easy to see that $M_2 = iM_1$ and we are done.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060899%2fnapoleon-like-theorem-concerning-squares-erected-on-sides-of-midpoint-polygon-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I have a lenghty complex-vector-computational solution. The main idea is in a following lemma.
Lemma: If $ABCD$ is a square with center $S$, then $$ S = {1over 2}(B-A)i+{1over 2}(A+B)$$
where letters represent complex numbers of coresponding points (with the same name).
So we get 8 centers and then calculate all $4$ midpoints of those segments. Say we have octagon $ABCDEFGH$, then those midpoints (if we suppose that $A+B+C+D+E+F+G+H =0$) are:
$$ M_1 = {1over 4}Big[(D+H-B-F)i+(A+E-C-G)Big]=-M_3$$
$$ M_2 = {1over 4}Big[(A+E-C-G)i+(B+F-D-H)Big] =-M_4$$
Now it is easy to see that $M_2 = iM_1$ and we are done.
add a comment |
I have a lenghty complex-vector-computational solution. The main idea is in a following lemma.
Lemma: If $ABCD$ is a square with center $S$, then $$ S = {1over 2}(B-A)i+{1over 2}(A+B)$$
where letters represent complex numbers of coresponding points (with the same name).
So we get 8 centers and then calculate all $4$ midpoints of those segments. Say we have octagon $ABCDEFGH$, then those midpoints (if we suppose that $A+B+C+D+E+F+G+H =0$) are:
$$ M_1 = {1over 4}Big[(D+H-B-F)i+(A+E-C-G)Big]=-M_3$$
$$ M_2 = {1over 4}Big[(A+E-C-G)i+(B+F-D-H)Big] =-M_4$$
Now it is easy to see that $M_2 = iM_1$ and we are done.
add a comment |
I have a lenghty complex-vector-computational solution. The main idea is in a following lemma.
Lemma: If $ABCD$ is a square with center $S$, then $$ S = {1over 2}(B-A)i+{1over 2}(A+B)$$
where letters represent complex numbers of coresponding points (with the same name).
So we get 8 centers and then calculate all $4$ midpoints of those segments. Say we have octagon $ABCDEFGH$, then those midpoints (if we suppose that $A+B+C+D+E+F+G+H =0$) are:
$$ M_1 = {1over 4}Big[(D+H-B-F)i+(A+E-C-G)Big]=-M_3$$
$$ M_2 = {1over 4}Big[(A+E-C-G)i+(B+F-D-H)Big] =-M_4$$
Now it is easy to see that $M_2 = iM_1$ and we are done.
I have a lenghty complex-vector-computational solution. The main idea is in a following lemma.
Lemma: If $ABCD$ is a square with center $S$, then $$ S = {1over 2}(B-A)i+{1over 2}(A+B)$$
where letters represent complex numbers of coresponding points (with the same name).
So we get 8 centers and then calculate all $4$ midpoints of those segments. Say we have octagon $ABCDEFGH$, then those midpoints (if we suppose that $A+B+C+D+E+F+G+H =0$) are:
$$ M_1 = {1over 4}Big[(D+H-B-F)i+(A+E-C-G)Big]=-M_3$$
$$ M_2 = {1over 4}Big[(A+E-C-G)i+(B+F-D-H)Big] =-M_4$$
Now it is easy to see that $M_2 = iM_1$ and we are done.
answered yesterday
greedoid
38.2k114797
38.2k114797
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060899%2fnapoleon-like-theorem-concerning-squares-erected-on-sides-of-midpoint-polygon-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Branko Grünbaum (RIP 2018) presented results of this type in a graduate course at the University of Washington many years ago. I'm not sure if they were published outside of lecture notes. There's a wonderful general result that goes something like this: Given an arbitrary $n$-gon, consider the various regular $(n/k)$-gons, defined as having vertices $(cos 2pi i k/n,sin2pi i k/n)$ for $i=0, 1, ldots, n-1$. (These include "starry" and "multiply-traced" figures, as well as the "dot" ($k=0$).) [continued]
– Blue
2 days ago
[continuation] Erecting an $(n/k)$-gon on the sides of the $n$-gon and joining centroids gives a new $n$-gon; erecting some other $(n/k)$-gon on the new sides gives another $n$-gon; etc. Iterating for all-but-one of $(n/k)$-gons, the final polygon is the remaining $(n/k)$-gon. For an $8$-gon, the $(n/k)$-gons are the dot ($k=0$), the regular octagon ($k=1$), the doubly-traced square ($k=2$), "starry octagon" ($k=3$), quad-traced segment ($k=4$, whose derived polygon is a midpoint polygon), and "reverse-direction" versions. Similar to what you have, except for the "opposite sides" thing.
– Blue
2 days ago
@Blue, aren't you describing the Petr-Douglas-Neumann Theorem? ( en.wikipedia.org/wiki/Petr-Douglas-Neumann_theorem )
– Tanny Sieben
2 days ago
Ah, yes. That seems to be it.
– Blue
2 days ago
Interestingly, the "opposite sides" thing seems attributable to a common alternative interpretation of $(n/k)$-gon. Rather than starting at $(1,0)$ of a regular "unit" $n$-gon and forming a single (possibly multiply-traced) path by jumping every $k$ vertices, possibly excluding some vertices, we connect every vertex of the $n$ gon to the vertex/vertices $k$ jumps ahead/behind. So, an $(8/4)$-gon would consist of four individual segments (perhaps best thought of as double-traced segments) instead one octo-traced segment. But your figure arguably also uses octo-traced segments. Intriguing.
– Blue
2 days ago