How would you prove $int^8_0frac1{sqrt{x+frac1{sqrt{x}}}}dx<4-frac1{2019}$?
We would like to prove the following inequality.
$$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dx<4-frac{1}{2019}tag{1}$$
What I've tried is using the AM-GM inequality, $$x+frac{1}{sqrt{x}}ge 2,sqrt{x timesfrac{1}{sqrt{x}}}=2x^{frac14} $$ then $$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dxlefrac{1}{sqrt{2}}int^{8}_{0}frac{1}{sqrt[8]{x}}, dx=4.98cdots<color{red}{5}-frac{1}{2019}.tag{2}$$How would you prove $(1)$?
$color{white}{11110811197115115116117100101110116}$
calculus integration inequality definite-integrals nested-radicals
|
show 4 more comments
We would like to prove the following inequality.
$$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dx<4-frac{1}{2019}tag{1}$$
What I've tried is using the AM-GM inequality, $$x+frac{1}{sqrt{x}}ge 2,sqrt{x timesfrac{1}{sqrt{x}}}=2x^{frac14} $$ then $$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dxlefrac{1}{sqrt{2}}int^{8}_{0}frac{1}{sqrt[8]{x}}, dx=4.98cdots<color{red}{5}-frac{1}{2019}.tag{2}$$How would you prove $(1)$?
$color{white}{11110811197115115116117100101110116}$
calculus integration inequality definite-integrals nested-radicals
2
This looks like a contest task; if this is actually the case I would recommend to delete the question hence posting of active contest questions is not allowed here on MSE.
– mrtaurho
Dec 14 '18 at 11:23
5
@mrtaurho No contest task here, just our passionate teacher motivating his students!
– Urbanmaths
Dec 14 '18 at 13:34
1
If you apply AM-GM just on the denominator $sqrt{x cdot 1}$ of the fraction $frac{1}{sqrt{x}}$, you will have that $$I leq int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}} approx 4.07, $$ which is a better result than yours. I think $int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}}$ has a closed form. Not sure!
– Alex Silva
Dec 14 '18 at 13:56
2
@Urbanmaths What exactly do you mean?
– mrtaurho
Dec 18 '18 at 10:12
2
I mean I'm just hoping some comments don't prevent people from answering the above question. Thanks.
– Urbanmaths
Dec 18 '18 at 18:04
|
show 4 more comments
We would like to prove the following inequality.
$$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dx<4-frac{1}{2019}tag{1}$$
What I've tried is using the AM-GM inequality, $$x+frac{1}{sqrt{x}}ge 2,sqrt{x timesfrac{1}{sqrt{x}}}=2x^{frac14} $$ then $$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dxlefrac{1}{sqrt{2}}int^{8}_{0}frac{1}{sqrt[8]{x}}, dx=4.98cdots<color{red}{5}-frac{1}{2019}.tag{2}$$How would you prove $(1)$?
$color{white}{11110811197115115116117100101110116}$
calculus integration inequality definite-integrals nested-radicals
We would like to prove the following inequality.
$$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dx<4-frac{1}{2019}tag{1}$$
What I've tried is using the AM-GM inequality, $$x+frac{1}{sqrt{x}}ge 2,sqrt{x timesfrac{1}{sqrt{x}}}=2x^{frac14} $$ then $$int^{8}_{0}frac{1}{sqrt{x+frac{1}{sqrt{x}}}},dxlefrac{1}{sqrt{2}}int^{8}_{0}frac{1}{sqrt[8]{x}}, dx=4.98cdots<color{red}{5}-frac{1}{2019}.tag{2}$$How would you prove $(1)$?
$color{white}{11110811197115115116117100101110116}$
calculus integration inequality definite-integrals nested-radicals
calculus integration inequality definite-integrals nested-radicals
edited 2 days ago
Olivier Oloa
108k17176293
108k17176293
asked Dec 14 '18 at 11:11
UrbanmathsUrbanmaths
613
613
2
This looks like a contest task; if this is actually the case I would recommend to delete the question hence posting of active contest questions is not allowed here on MSE.
– mrtaurho
Dec 14 '18 at 11:23
5
@mrtaurho No contest task here, just our passionate teacher motivating his students!
– Urbanmaths
Dec 14 '18 at 13:34
1
If you apply AM-GM just on the denominator $sqrt{x cdot 1}$ of the fraction $frac{1}{sqrt{x}}$, you will have that $$I leq int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}} approx 4.07, $$ which is a better result than yours. I think $int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}}$ has a closed form. Not sure!
– Alex Silva
Dec 14 '18 at 13:56
2
@Urbanmaths What exactly do you mean?
– mrtaurho
Dec 18 '18 at 10:12
2
I mean I'm just hoping some comments don't prevent people from answering the above question. Thanks.
– Urbanmaths
Dec 18 '18 at 18:04
|
show 4 more comments
2
This looks like a contest task; if this is actually the case I would recommend to delete the question hence posting of active contest questions is not allowed here on MSE.
– mrtaurho
Dec 14 '18 at 11:23
5
@mrtaurho No contest task here, just our passionate teacher motivating his students!
– Urbanmaths
Dec 14 '18 at 13:34
1
If you apply AM-GM just on the denominator $sqrt{x cdot 1}$ of the fraction $frac{1}{sqrt{x}}$, you will have that $$I leq int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}} approx 4.07, $$ which is a better result than yours. I think $int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}}$ has a closed form. Not sure!
– Alex Silva
Dec 14 '18 at 13:56
2
@Urbanmaths What exactly do you mean?
– mrtaurho
Dec 18 '18 at 10:12
2
I mean I'm just hoping some comments don't prevent people from answering the above question. Thanks.
– Urbanmaths
Dec 18 '18 at 18:04
2
2
This looks like a contest task; if this is actually the case I would recommend to delete the question hence posting of active contest questions is not allowed here on MSE.
– mrtaurho
Dec 14 '18 at 11:23
This looks like a contest task; if this is actually the case I would recommend to delete the question hence posting of active contest questions is not allowed here on MSE.
– mrtaurho
Dec 14 '18 at 11:23
5
5
@mrtaurho No contest task here, just our passionate teacher motivating his students!
– Urbanmaths
Dec 14 '18 at 13:34
@mrtaurho No contest task here, just our passionate teacher motivating his students!
– Urbanmaths
Dec 14 '18 at 13:34
1
1
If you apply AM-GM just on the denominator $sqrt{x cdot 1}$ of the fraction $frac{1}{sqrt{x}}$, you will have that $$I leq int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}} approx 4.07, $$ which is a better result than yours. I think $int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}}$ has a closed form. Not sure!
– Alex Silva
Dec 14 '18 at 13:56
If you apply AM-GM just on the denominator $sqrt{x cdot 1}$ of the fraction $frac{1}{sqrt{x}}$, you will have that $$I leq int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}} approx 4.07, $$ which is a better result than yours. I think $int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}}$ has a closed form. Not sure!
– Alex Silva
Dec 14 '18 at 13:56
2
2
@Urbanmaths What exactly do you mean?
– mrtaurho
Dec 18 '18 at 10:12
@Urbanmaths What exactly do you mean?
– mrtaurho
Dec 18 '18 at 10:12
2
2
I mean I'm just hoping some comments don't prevent people from answering the above question. Thanks.
– Urbanmaths
Dec 18 '18 at 18:04
I mean I'm just hoping some comments don't prevent people from answering the above question. Thanks.
– Urbanmaths
Dec 18 '18 at 18:04
|
show 4 more comments
1 Answer
1
active
oldest
votes
For $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag1
end{align}
then, using
begin{align}
small{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}>2sqrt{x}}
end{align}
one gets
$$int_1^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}. tag2
$$
By the change of variable $u=2sqrt{x}$, $du=frac{dx}{sqrt{x}}$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}
\\&=int_1^{8}frac{16x^{3}+12x^{3/2}+1}{16x^{3}+20x^{3/2}+5}:frac{dx}{sqrt{x}}
\\&=int_2^{4sqrt{2}}frac{u^6+6u^3+4}{u^6+10u^3+20}:du, qquad u=2^{1/3}5^{1/6}t,
\\&=4sqrt{2}-2-2^{4/3}5^{-1/3}varphi int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+varphi}-frac{2^{4/3}5^{2/3}}{varphi}int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+frac1{varphi}}.
end{align}
Then, using the evaluation
$$
int_0^bfrac{dt}{t^3+c^3}=frac{sqrt{3}pi}{18c^2}+frac{sqrt{3}}{3c^2}arctan left(frac{2b-c}{sqrt{3}c}right)-frac{1}{6c^2}ln left(frac{(2b-c)^2+3c^2}{4(b+c)^2}right),,c>0,,b>0,
$$ one gets
$$
int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}=3.3199color{red}{58928}cdots. tag3
$$
In a like manner, for $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{1}{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag4
end{align}
then, using
begin{align}
small{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}>frac{2}{x^{1/4}}}
end{align}
one gets
$$int_0^1frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}. tag5
$$
By the change of variable $u=sqrt[4]{x}$, $dx=4u^3du$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}
\\&=int_0^{1}frac{x^{3}+12x^{3/2}+16}{5x^{3}+20x^{3/2}+16}:sqrt[4]{x}:dx
\\&=4int_0^1frac{u^{12}+12u^6+16}{5u^{12}+20u^6+16}:u^4du, qquad u=2^{1/3}5^{-1/12}t,
\\&=frac4{25}+frac{6}{sqrt{5}}+2^{-2/3}5^{-1/3}varphi int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+varphi}-frac{2^{4/3}5^{-1/3}}{varphi}int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+frac1{varphi}}.
end{align}
Then, using the evaluation
begin{align}
&6cint_0^bfrac{t^4dt}{t^6+c^6}qquad (c>0,,b>0)
\\&=arctan left(sqrt{3}+frac{2b}{c}right)-arctan left(sqrt{3}-frac{2b}{c}right)+2arctan left(frac{b}{c}right)-frac{sqrt{3}}{2}ln left(frac{b^2+sqrt{3}bc+c^2}{b^2+sqrt{3}bc+c^2}right)
end{align} one obtains
$$
int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}=0.6739color{red}{21415}cdots. tag6
$$
Finally, combining $(2)$, $(3)$, $(5)$ and $(6)$ yields
$$int_0^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <color{red}{3.99}38803cdots<color{red}{4}-frac1{2019}=color{red}{3.99}950cdots tag7
$$
as desired.
+1. Of course it's the man himself.
– dezdichado
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039230%2fhow-would-you-prove-int8-0-frac1-sqrtx-frac1-sqrtxdx4-frac12019%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
For $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag1
end{align}
then, using
begin{align}
small{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}>2sqrt{x}}
end{align}
one gets
$$int_1^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}. tag2
$$
By the change of variable $u=2sqrt{x}$, $du=frac{dx}{sqrt{x}}$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}
\\&=int_1^{8}frac{16x^{3}+12x^{3/2}+1}{16x^{3}+20x^{3/2}+5}:frac{dx}{sqrt{x}}
\\&=int_2^{4sqrt{2}}frac{u^6+6u^3+4}{u^6+10u^3+20}:du, qquad u=2^{1/3}5^{1/6}t,
\\&=4sqrt{2}-2-2^{4/3}5^{-1/3}varphi int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+varphi}-frac{2^{4/3}5^{2/3}}{varphi}int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+frac1{varphi}}.
end{align}
Then, using the evaluation
$$
int_0^bfrac{dt}{t^3+c^3}=frac{sqrt{3}pi}{18c^2}+frac{sqrt{3}}{3c^2}arctan left(frac{2b-c}{sqrt{3}c}right)-frac{1}{6c^2}ln left(frac{(2b-c)^2+3c^2}{4(b+c)^2}right),,c>0,,b>0,
$$ one gets
$$
int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}=3.3199color{red}{58928}cdots. tag3
$$
In a like manner, for $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{1}{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag4
end{align}
then, using
begin{align}
small{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}>frac{2}{x^{1/4}}}
end{align}
one gets
$$int_0^1frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}. tag5
$$
By the change of variable $u=sqrt[4]{x}$, $dx=4u^3du$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}
\\&=int_0^{1}frac{x^{3}+12x^{3/2}+16}{5x^{3}+20x^{3/2}+16}:sqrt[4]{x}:dx
\\&=4int_0^1frac{u^{12}+12u^6+16}{5u^{12}+20u^6+16}:u^4du, qquad u=2^{1/3}5^{-1/12}t,
\\&=frac4{25}+frac{6}{sqrt{5}}+2^{-2/3}5^{-1/3}varphi int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+varphi}-frac{2^{4/3}5^{-1/3}}{varphi}int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+frac1{varphi}}.
end{align}
Then, using the evaluation
begin{align}
&6cint_0^bfrac{t^4dt}{t^6+c^6}qquad (c>0,,b>0)
\\&=arctan left(sqrt{3}+frac{2b}{c}right)-arctan left(sqrt{3}-frac{2b}{c}right)+2arctan left(frac{b}{c}right)-frac{sqrt{3}}{2}ln left(frac{b^2+sqrt{3}bc+c^2}{b^2+sqrt{3}bc+c^2}right)
end{align} one obtains
$$
int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}=0.6739color{red}{21415}cdots. tag6
$$
Finally, combining $(2)$, $(3)$, $(5)$ and $(6)$ yields
$$int_0^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <color{red}{3.99}38803cdots<color{red}{4}-frac1{2019}=color{red}{3.99}950cdots tag7
$$
as desired.
+1. Of course it's the man himself.
– dezdichado
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
add a comment |
For $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag1
end{align}
then, using
begin{align}
small{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}>2sqrt{x}}
end{align}
one gets
$$int_1^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}. tag2
$$
By the change of variable $u=2sqrt{x}$, $du=frac{dx}{sqrt{x}}$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}
\\&=int_1^{8}frac{16x^{3}+12x^{3/2}+1}{16x^{3}+20x^{3/2}+5}:frac{dx}{sqrt{x}}
\\&=int_2^{4sqrt{2}}frac{u^6+6u^3+4}{u^6+10u^3+20}:du, qquad u=2^{1/3}5^{1/6}t,
\\&=4sqrt{2}-2-2^{4/3}5^{-1/3}varphi int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+varphi}-frac{2^{4/3}5^{2/3}}{varphi}int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+frac1{varphi}}.
end{align}
Then, using the evaluation
$$
int_0^bfrac{dt}{t^3+c^3}=frac{sqrt{3}pi}{18c^2}+frac{sqrt{3}}{3c^2}arctan left(frac{2b-c}{sqrt{3}c}right)-frac{1}{6c^2}ln left(frac{(2b-c)^2+3c^2}{4(b+c)^2}right),,c>0,,b>0,
$$ one gets
$$
int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}=3.3199color{red}{58928}cdots. tag3
$$
In a like manner, for $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{1}{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag4
end{align}
then, using
begin{align}
small{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}>frac{2}{x^{1/4}}}
end{align}
one gets
$$int_0^1frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}. tag5
$$
By the change of variable $u=sqrt[4]{x}$, $dx=4u^3du$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}
\\&=int_0^{1}frac{x^{3}+12x^{3/2}+16}{5x^{3}+20x^{3/2}+16}:sqrt[4]{x}:dx
\\&=4int_0^1frac{u^{12}+12u^6+16}{5u^{12}+20u^6+16}:u^4du, qquad u=2^{1/3}5^{-1/12}t,
\\&=frac4{25}+frac{6}{sqrt{5}}+2^{-2/3}5^{-1/3}varphi int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+varphi}-frac{2^{4/3}5^{-1/3}}{varphi}int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+frac1{varphi}}.
end{align}
Then, using the evaluation
begin{align}
&6cint_0^bfrac{t^4dt}{t^6+c^6}qquad (c>0,,b>0)
\\&=arctan left(sqrt{3}+frac{2b}{c}right)-arctan left(sqrt{3}-frac{2b}{c}right)+2arctan left(frac{b}{c}right)-frac{sqrt{3}}{2}ln left(frac{b^2+sqrt{3}bc+c^2}{b^2+sqrt{3}bc+c^2}right)
end{align} one obtains
$$
int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}=0.6739color{red}{21415}cdots. tag6
$$
Finally, combining $(2)$, $(3)$, $(5)$ and $(6)$ yields
$$int_0^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <color{red}{3.99}38803cdots<color{red}{4}-frac1{2019}=color{red}{3.99}950cdots tag7
$$
as desired.
+1. Of course it's the man himself.
– dezdichado
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
add a comment |
For $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag1
end{align}
then, using
begin{align}
small{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}>2sqrt{x}}
end{align}
one gets
$$int_1^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}. tag2
$$
By the change of variable $u=2sqrt{x}$, $du=frac{dx}{sqrt{x}}$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}
\\&=int_1^{8}frac{16x^{3}+12x^{3/2}+1}{16x^{3}+20x^{3/2}+5}:frac{dx}{sqrt{x}}
\\&=int_2^{4sqrt{2}}frac{u^6+6u^3+4}{u^6+10u^3+20}:du, qquad u=2^{1/3}5^{1/6}t,
\\&=4sqrt{2}-2-2^{4/3}5^{-1/3}varphi int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+varphi}-frac{2^{4/3}5^{2/3}}{varphi}int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+frac1{varphi}}.
end{align}
Then, using the evaluation
$$
int_0^bfrac{dt}{t^3+c^3}=frac{sqrt{3}pi}{18c^2}+frac{sqrt{3}}{3c^2}arctan left(frac{2b-c}{sqrt{3}c}right)-frac{1}{6c^2}ln left(frac{(2b-c)^2+3c^2}{4(b+c)^2}right),,c>0,,b>0,
$$ one gets
$$
int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}=3.3199color{red}{58928}cdots. tag3
$$
In a like manner, for $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{1}{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag4
end{align}
then, using
begin{align}
small{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}>frac{2}{x^{1/4}}}
end{align}
one gets
$$int_0^1frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}. tag5
$$
By the change of variable $u=sqrt[4]{x}$, $dx=4u^3du$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}
\\&=int_0^{1}frac{x^{3}+12x^{3/2}+16}{5x^{3}+20x^{3/2}+16}:sqrt[4]{x}:dx
\\&=4int_0^1frac{u^{12}+12u^6+16}{5u^{12}+20u^6+16}:u^4du, qquad u=2^{1/3}5^{-1/12}t,
\\&=frac4{25}+frac{6}{sqrt{5}}+2^{-2/3}5^{-1/3}varphi int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+varphi}-frac{2^{4/3}5^{-1/3}}{varphi}int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+frac1{varphi}}.
end{align}
Then, using the evaluation
begin{align}
&6cint_0^bfrac{t^4dt}{t^6+c^6}qquad (c>0,,b>0)
\\&=arctan left(sqrt{3}+frac{2b}{c}right)-arctan left(sqrt{3}-frac{2b}{c}right)+2arctan left(frac{b}{c}right)-frac{sqrt{3}}{2}ln left(frac{b^2+sqrt{3}bc+c^2}{b^2+sqrt{3}bc+c^2}right)
end{align} one obtains
$$
int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}=0.6739color{red}{21415}cdots. tag6
$$
Finally, combining $(2)$, $(3)$, $(5)$ and $(6)$ yields
$$int_0^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <color{red}{3.99}38803cdots<color{red}{4}-frac1{2019}=color{red}{3.99}950cdots tag7
$$
as desired.
For $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag1
end{align}
then, using
begin{align}
small{sqrt{x}+sqrt {x+frac{1}{sqrt{x}}}>2sqrt{x}}
end{align}
one gets
$$int_1^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}. tag2
$$
By the change of variable $u=2sqrt{x}$, $du=frac{dx}{sqrt{x}}$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}
\\&=int_1^{8}frac{16x^{3}+12x^{3/2}+1}{16x^{3}+20x^{3/2}+5}:frac{dx}{sqrt{x}}
\\&=int_2^{4sqrt{2}}frac{u^6+6u^3+4}{u^6+10u^3+20}:du, qquad u=2^{1/3}5^{1/6}t,
\\&=4sqrt{2}-2-2^{4/3}5^{-1/3}varphi int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+varphi}-frac{2^{4/3}5^{2/3}}{varphi}int_{2^{2/3}5^{-1/6}}^{2^{13/6}5^{-1/6}}frac{dt}{t^3+frac1{varphi}}.
end{align}
Then, using the evaluation
$$
int_0^bfrac{dt}{t^3+c^3}=frac{sqrt{3}pi}{18c^2}+frac{sqrt{3}}{3c^2}arctan left(frac{2b-c}{sqrt{3}c}right)-frac{1}{6c^2}ln left(frac{(2b-c)^2+3c^2}{4(b+c)^2}right),,c>0,,b>0,
$$ one gets
$$
int_1^8frac{dx}{sqrt{x}+frac {1}{2x + frac 1{2sqrt{x} +frac{1}{2x+frac{1}{2sqrt{x}}}}}}=3.3199color{red}{58928}cdots. tag3
$$
In a like manner, for $x>0$, one may check that
begin{align}
small{sqrt {x+frac{1}{sqrt{x}}}}&=frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{1}{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}}}}} tag4
end{align}
then, using
begin{align}
small{frac{1}{x^{1/4}}+sqrt {x+frac{1}{sqrt{x}}}>frac{2}{x^{1/4}}}
end{align}
one gets
$$int_0^1frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}. tag5
$$
By the change of variable $u=sqrt[4]{x}$, $dx=4u^3du$, setting $varphi=frac{1+sqrt{5}}2$, one has
begin{align}
&int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}
\\&=int_0^{1}frac{x^{3}+12x^{3/2}+16}{5x^{3}+20x^{3/2}+16}:sqrt[4]{x}:dx
\\&=4int_0^1frac{u^{12}+12u^6+16}{5u^{12}+20u^6+16}:u^4du, qquad u=2^{1/3}5^{-1/12}t,
\\&=frac4{25}+frac{6}{sqrt{5}}+2^{-2/3}5^{-1/3}varphi int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+varphi}-frac{2^{4/3}5^{-1/3}}{varphi}int_0^{2^{-1/3}5^{1/12}}!!frac{t^4dt}{t^6+frac1{varphi}}.
end{align}
Then, using the evaluation
begin{align}
&6cint_0^bfrac{t^4dt}{t^6+c^6}qquad (c>0,,b>0)
\\&=arctan left(sqrt{3}+frac{2b}{c}right)-arctan left(sqrt{3}-frac{2b}{c}right)+2arctan left(frac{b}{c}right)-frac{sqrt{3}}{2}ln left(frac{b^2+sqrt{3}bc+c^2}{b^2+sqrt{3}bc+c^2}right)
end{align} one obtains
$$
int_0^1frac{dx}{frac{1}{x^{1/4}}+frac {1}{frac{2}{x^{5/4}} + frac 1{frac{2}{x^{1/4}} +frac{1}{frac{2}{x^{5/4}}+frac{x^{1/4}}2}}}}=0.6739color{red}{21415}cdots. tag6
$$
Finally, combining $(2)$, $(3)$, $(5)$ and $(6)$ yields
$$int_0^8frac{dx}{sqrt {x+frac{1}{sqrt{x}}}} <color{red}{3.99}38803cdots<color{red}{4}-frac1{2019}=color{red}{3.99}950cdots tag7
$$
as desired.
answered Jan 4 at 9:52
Olivier OloaOlivier Oloa
108k17176293
108k17176293
+1. Of course it's the man himself.
– dezdichado
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
add a comment |
+1. Of course it's the man himself.
– dezdichado
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
+1. Of course it's the man himself.
– dezdichado
2 days ago
+1. Of course it's the man himself.
– dezdichado
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
That is ingenious.
– TheSimpliFire
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039230%2fhow-would-you-prove-int8-0-frac1-sqrtx-frac1-sqrtxdx4-frac12019%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
This looks like a contest task; if this is actually the case I would recommend to delete the question hence posting of active contest questions is not allowed here on MSE.
– mrtaurho
Dec 14 '18 at 11:23
5
@mrtaurho No contest task here, just our passionate teacher motivating his students!
– Urbanmaths
Dec 14 '18 at 13:34
1
If you apply AM-GM just on the denominator $sqrt{x cdot 1}$ of the fraction $frac{1}{sqrt{x}}$, you will have that $$I leq int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}} approx 4.07, $$ which is a better result than yours. I think $int_{0}^{8}sqrt{frac{x+1}{x^2+x+2}}$ has a closed form. Not sure!
– Alex Silva
Dec 14 '18 at 13:56
2
@Urbanmaths What exactly do you mean?
– mrtaurho
Dec 18 '18 at 10:12
2
I mean I'm just hoping some comments don't prevent people from answering the above question. Thanks.
– Urbanmaths
Dec 18 '18 at 18:04