If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$, then $sin 5°+sin 10°+sin15°+cdots+sin 175°=?$
I'm stuck in this question
If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$
$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$
I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$
But, I didn't catch a hint here.
algebra-precalculus trigonometry summation contest-math
add a comment |
I'm stuck in this question
If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$
$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$
I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$
But, I didn't catch a hint here.
algebra-precalculus trigonometry summation contest-math
1
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
– Thomas Shelby
Jan 4 at 12:20
You can link to your question more easier than anybody.
– kelalaka
Jan 4 at 15:02
math.stackexchange.com/questions/17966/…
– lab bhattacharjee
Jan 4 at 19:47
add a comment |
I'm stuck in this question
If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$
$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$
I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$
But, I didn't catch a hint here.
algebra-precalculus trigonometry summation contest-math
I'm stuck in this question
If $sin 5°+sin 10°+sin15°+cdots+sin 40°=a$
$sin 5°+sin 10°+sin15°+cdots+sin 175°=?$
I know that, (I asked before) $sin 5°+sin 10°+sin15°+cdots+sin 175°=tanfrac{175}{2}$
But, I didn't catch a hint here.
algebra-precalculus trigonometry summation contest-math
algebra-precalculus trigonometry summation contest-math
edited Jan 4 at 11:29
Blue
47.7k870151
47.7k870151
asked Jan 4 at 11:22
BeginnerBeginner
30510
30510
1
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
– Thomas Shelby
Jan 4 at 12:20
You can link to your question more easier than anybody.
– kelalaka
Jan 4 at 15:02
math.stackexchange.com/questions/17966/…
– lab bhattacharjee
Jan 4 at 19:47
add a comment |
1
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
– Thomas Shelby
Jan 4 at 12:20
You can link to your question more easier than anybody.
– kelalaka
Jan 4 at 15:02
math.stackexchange.com/questions/17966/…
– lab bhattacharjee
Jan 4 at 19:47
1
1
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
– Thomas Shelby
Jan 4 at 12:20
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
– Thomas Shelby
Jan 4 at 12:20
You can link to your question more easier than anybody.
– kelalaka
Jan 4 at 15:02
You can link to your question more easier than anybody.
– kelalaka
Jan 4 at 15:02
math.stackexchange.com/questions/17966/…
– lab bhattacharjee
Jan 4 at 19:47
math.stackexchange.com/questions/17966/…
– lab bhattacharjee
Jan 4 at 19:47
add a comment |
2 Answers
2
active
oldest
votes
Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$
and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$
Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$
The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.
Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$
gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
1
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
add a comment |
Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,
$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$
$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$
If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$
$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$
Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$
Thank you for answer.
– Beginner
Jan 5 at 14:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061540%2fif-sin-5-sin-10-sin15-cdots-sin-40-a-then-sin-5-sin-10-sin15%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$
and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$
Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$
The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.
Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$
gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
1
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
add a comment |
Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$
and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$
Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$
The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.
Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$
gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
1
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
add a comment |
Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$
and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$
Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$
The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.
Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$
gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
Let
$$
a = sin 5°+sin 10°+sin15°+cdots+sin 40°= \
operatorname{Im} (sum_{n=0}^{8}exp(i n 5 pi/180)) $$
and
$$
b = sin 5°+sin 10°+sin15°+cdots+sin 175°= \
operatorname{Im} left((1 + exp(i 9cdot 5 pi/180)+ exp(i 2cdot 9cdot 5 pi/180)+ exp(i 3cdot9cdot 5 pi/180))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + exp(i pi/4)+ exp(i 2 pi/4)+ exp(i 3 pi/4))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
operatorname{Im} left((1 + i(1 +sqrt 2))cdot sum_{n=0}^{8}exp(i n 5 pi/180)right) =\
a + (1 +sqrt 2)operatorname{Re} left( sum_{n=0}^{8}exp(i n 5 pi/180)right) = a + (1 +sqrt 2)sum_{n=0}^{8}cos( n 5 pi/180)\
= a + (1 +sqrt 2)sum_{n=0}^{8}sin((90 - 5 n) pi/180)
$$
Denote $c = sum_{n=0}^{8}sin((90 - 5 n) pi/180)$. Then we have
$$
b = 2 a + 2c +frac{2}{sqrt 2} -1
$$
The last two terms are $sin 45° = frac{1}{sqrt 2}$, $sin 135° = frac{1}{sqrt 2}$. And $sin 90° = 1$ has to be subtracted because it was counted twice in $2c$.
Solving $$
b = 2 a + 2c +frac{2}{sqrt 2} -1 \
b = a + (1 +sqrt 2) c
$$
gives $b = frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
edited Jan 4 at 13:32
answered Jan 4 at 12:05
AndreasAndreas
7,8081037
7,8081037
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
1
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
add a comment |
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
1
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
(+1) Many thanks. I hope we can complete.
– Beginner
Jan 4 at 12:19
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
$frac{left( sqrt{2}+2right) , left( 4 a+sqrt{2}right) }{2}$
– Aleksas Domarkas
Jan 4 at 12:43
1
1
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
@Beginner I completed that approach.
– Andreas
Jan 4 at 12:59
add a comment |
Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,
$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$
$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$
If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$
$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$
Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$
Thank you for answer.
– Beginner
Jan 5 at 14:03
add a comment |
Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,
$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$
$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$
If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$
$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$
Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$
Thank you for answer.
– Beginner
Jan 5 at 14:03
add a comment |
Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,
$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$
$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$
If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$
$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$
Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$
Using How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?,
$2acdotsin2.5^circ=cos2.5^circ-cos(45^circ-2.5^circ)$
$iffleft(2a+dfrac1{sqrt2}right)sin2.5^circ=left(1-dfrac1{sqrt2}right)cos2.5^circ (1)$
If $b=sin 5^circ+sin 10^circ+sin15^circ+cdots+sin 175^circ,$
$2bcdotsin2.5^circ=cos2.5^circ-cos(180^circ-2.5^circ)=2cos2.5^circ (2)$
Divide $(2)$ by $(1)$ to find $$dfrac{2b}{left(2a+dfrac1{sqrt2}right)}=dfrac2{left(1-dfrac1{sqrt2}right)}$$ as $sin2.5^circcdotcos2.5^circne0$
answered Jan 5 at 13:25
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
Thank you for answer.
– Beginner
Jan 5 at 14:03
add a comment |
Thank you for answer.
– Beginner
Jan 5 at 14:03
Thank you for answer.
– Beginner
Jan 5 at 14:03
Thank you for answer.
– Beginner
Jan 5 at 14:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061540%2fif-sin-5-sin-10-sin15-cdots-sin-40-a-then-sin-5-sin-10-sin15%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$sin(pi/4+x)=frac{1}{sqrt 2}(sin x+cos x)$,$sin(pi/2+x)=cos x$,$sin(3pi/4+x)=frac{1}{sqrt 2}(sin x-cos x)$-These identities may be helpful.
– Thomas Shelby
Jan 4 at 12:20
You can link to your question more easier than anybody.
– kelalaka
Jan 4 at 15:02
math.stackexchange.com/questions/17966/…
– lab bhattacharjee
Jan 4 at 19:47