Verification of the approach on finding the limit of $x_n$ as $ntoinfty$ given $x_{n+1} = sqrt[k]{5x_n}$...












2















Let $x_n$ denote a sequence, $ninBbb N$:
$$
begin{cases}
x_{n+1} = sqrt[k]{5x_n}\
x_1 = sqrt[k]{5}\
kinBbb N
end{cases}
$$

Find:
$$
lim_{ntoinfty} sqrt[k]{x_n}
$$




I would like to verify my approach on finding the limit, which doesn't seem very natural and potentially find a simpler one. I've started with writing down several first terms:
$$
x_1 = sqrt[k]{5}\
x_2 = sqrt[k]{5sqrt[k]{5}}\
x_3 = sqrt[k]{5sqrt[k]{5sqrt[k]{5}}}\
dots
$$



Rewrite as:
$$
begin{align}
x_1 &= 5^{1over k}\
x_2 &= left(5cdot 5^{1over k}right)^{1over k} = 5^{frac{k+1}{k^2}}\
&cdots\
x_n &= 5^{frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}}
end{align}
$$



This is hardly readable using powers in mathjax. Rewrite:
$$
log_5 x_n = frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}
$$



Nominator is a regular geometric series:
$$
1 + k + cdots + k^{n-2} + k^{n-1} = frac{k^n - 1}{k - 1}
$$



Thus:
$$
frac{k^n - 1}{k - 1} cdot frac{1}{k^n} = frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}tag 1
$$



Since $a^x$ is continuous we may consider the limit of $(1)$:
$$
lim_{ntoinfty} left(frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}right) = frac{1}{k-1}
$$

Which implies:
$$
lim_{ntoinfty}x_n = sqrt[k-1]{5}
$$



Is it the right way to approach this problem? Could it be simplified? Thank you!










share|cite|improve this question



























    2















    Let $x_n$ denote a sequence, $ninBbb N$:
    $$
    begin{cases}
    x_{n+1} = sqrt[k]{5x_n}\
    x_1 = sqrt[k]{5}\
    kinBbb N
    end{cases}
    $$

    Find:
    $$
    lim_{ntoinfty} sqrt[k]{x_n}
    $$




    I would like to verify my approach on finding the limit, which doesn't seem very natural and potentially find a simpler one. I've started with writing down several first terms:
    $$
    x_1 = sqrt[k]{5}\
    x_2 = sqrt[k]{5sqrt[k]{5}}\
    x_3 = sqrt[k]{5sqrt[k]{5sqrt[k]{5}}}\
    dots
    $$



    Rewrite as:
    $$
    begin{align}
    x_1 &= 5^{1over k}\
    x_2 &= left(5cdot 5^{1over k}right)^{1over k} = 5^{frac{k+1}{k^2}}\
    &cdots\
    x_n &= 5^{frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}}
    end{align}
    $$



    This is hardly readable using powers in mathjax. Rewrite:
    $$
    log_5 x_n = frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}
    $$



    Nominator is a regular geometric series:
    $$
    1 + k + cdots + k^{n-2} + k^{n-1} = frac{k^n - 1}{k - 1}
    $$



    Thus:
    $$
    frac{k^n - 1}{k - 1} cdot frac{1}{k^n} = frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}tag 1
    $$



    Since $a^x$ is continuous we may consider the limit of $(1)$:
    $$
    lim_{ntoinfty} left(frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}right) = frac{1}{k-1}
    $$

    Which implies:
    $$
    lim_{ntoinfty}x_n = sqrt[k-1]{5}
    $$



    Is it the right way to approach this problem? Could it be simplified? Thank you!










    share|cite|improve this question

























      2












      2








      2








      Let $x_n$ denote a sequence, $ninBbb N$:
      $$
      begin{cases}
      x_{n+1} = sqrt[k]{5x_n}\
      x_1 = sqrt[k]{5}\
      kinBbb N
      end{cases}
      $$

      Find:
      $$
      lim_{ntoinfty} sqrt[k]{x_n}
      $$




      I would like to verify my approach on finding the limit, which doesn't seem very natural and potentially find a simpler one. I've started with writing down several first terms:
      $$
      x_1 = sqrt[k]{5}\
      x_2 = sqrt[k]{5sqrt[k]{5}}\
      x_3 = sqrt[k]{5sqrt[k]{5sqrt[k]{5}}}\
      dots
      $$



      Rewrite as:
      $$
      begin{align}
      x_1 &= 5^{1over k}\
      x_2 &= left(5cdot 5^{1over k}right)^{1over k} = 5^{frac{k+1}{k^2}}\
      &cdots\
      x_n &= 5^{frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}}
      end{align}
      $$



      This is hardly readable using powers in mathjax. Rewrite:
      $$
      log_5 x_n = frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}
      $$



      Nominator is a regular geometric series:
      $$
      1 + k + cdots + k^{n-2} + k^{n-1} = frac{k^n - 1}{k - 1}
      $$



      Thus:
      $$
      frac{k^n - 1}{k - 1} cdot frac{1}{k^n} = frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}tag 1
      $$



      Since $a^x$ is continuous we may consider the limit of $(1)$:
      $$
      lim_{ntoinfty} left(frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}right) = frac{1}{k-1}
      $$

      Which implies:
      $$
      lim_{ntoinfty}x_n = sqrt[k-1]{5}
      $$



      Is it the right way to approach this problem? Could it be simplified? Thank you!










      share|cite|improve this question














      Let $x_n$ denote a sequence, $ninBbb N$:
      $$
      begin{cases}
      x_{n+1} = sqrt[k]{5x_n}\
      x_1 = sqrt[k]{5}\
      kinBbb N
      end{cases}
      $$

      Find:
      $$
      lim_{ntoinfty} sqrt[k]{x_n}
      $$




      I would like to verify my approach on finding the limit, which doesn't seem very natural and potentially find a simpler one. I've started with writing down several first terms:
      $$
      x_1 = sqrt[k]{5}\
      x_2 = sqrt[k]{5sqrt[k]{5}}\
      x_3 = sqrt[k]{5sqrt[k]{5sqrt[k]{5}}}\
      dots
      $$



      Rewrite as:
      $$
      begin{align}
      x_1 &= 5^{1over k}\
      x_2 &= left(5cdot 5^{1over k}right)^{1over k} = 5^{frac{k+1}{k^2}}\
      &cdots\
      x_n &= 5^{frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}}
      end{align}
      $$



      This is hardly readable using powers in mathjax. Rewrite:
      $$
      log_5 x_n = frac{k^{n-1} + k^{n-2} + cdots + 1}{k^n}
      $$



      Nominator is a regular geometric series:
      $$
      1 + k + cdots + k^{n-2} + k^{n-1} = frac{k^n - 1}{k - 1}
      $$



      Thus:
      $$
      frac{k^n - 1}{k - 1} cdot frac{1}{k^n} = frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}tag 1
      $$



      Since $a^x$ is continuous we may consider the limit of $(1)$:
      $$
      lim_{ntoinfty} left(frac{k^n}{(k - 1)k^n} - frac{1}{(k-1)k^n}right) = frac{1}{k-1}
      $$

      Which implies:
      $$
      lim_{ntoinfty}x_n = sqrt[k-1]{5}
      $$



      Is it the right way to approach this problem? Could it be simplified? Thank you!







      calculus limits proof-verification






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 4 at 11:26









      romanroman

      2,02221221




      2,02221221






















          1 Answer
          1






          active

          oldest

          votes


















          2














          We have $x_2 = sqrt[k]{5sqrt[k]{5}} ge sqrt[k]{5} = x_1$. If we assume that $x_{n} ge x_{n-1}$, it follows
          $sqrt[k]{5x_{n}} ge sqrt[k]{5x_{n-1}}$, or $x_{n+1} ge x_n$. Induction implies that $(x_n)_n$ is increasing.



          We have $x_1 = sqrt[k]{5} le sqrt[k-1]{5}$. If we assume $x_n le sqrt[k-1]{5}$, we get $$x_{n+1} = sqrt[k]{5x_n} le sqrt[k]{5sqrt[k-1]{5}} = left(5cdot 5^{frac1{k-1}}right)^{1/k} = sqrt[k-1]{5}$$
          Induction implies that $x_n le sqrt[k-1]{5}, forall ninmathbb{N}$.



          The sequence $(x_n)_n$ is increasing and bounded from above so it converges to some $L = lim_{ntoinfty} x_n$.



          Letting $ntoinfty$ in the relation $x_{n+1} = sqrt[k]{5x_n}$ gives
          $$L = sqrt[k]{5L} implies L(L^{k-1}-5) = 0$$



          It cannot be $L = 0$ because $x_n ge x_1 =sqrt[k]{5}, forall ninmathbb{N}$. Therefore $L = sqrt[k-1]{5}$.






          share|cite|improve this answer





















          • Thank you! Induction is indeed a better suit here.
            – roman
            Jan 4 at 11:55











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061547%2fverification-of-the-approach-on-finding-the-limit-of-x-n-as-n-to-infty-given%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2














          We have $x_2 = sqrt[k]{5sqrt[k]{5}} ge sqrt[k]{5} = x_1$. If we assume that $x_{n} ge x_{n-1}$, it follows
          $sqrt[k]{5x_{n}} ge sqrt[k]{5x_{n-1}}$, or $x_{n+1} ge x_n$. Induction implies that $(x_n)_n$ is increasing.



          We have $x_1 = sqrt[k]{5} le sqrt[k-1]{5}$. If we assume $x_n le sqrt[k-1]{5}$, we get $$x_{n+1} = sqrt[k]{5x_n} le sqrt[k]{5sqrt[k-1]{5}} = left(5cdot 5^{frac1{k-1}}right)^{1/k} = sqrt[k-1]{5}$$
          Induction implies that $x_n le sqrt[k-1]{5}, forall ninmathbb{N}$.



          The sequence $(x_n)_n$ is increasing and bounded from above so it converges to some $L = lim_{ntoinfty} x_n$.



          Letting $ntoinfty$ in the relation $x_{n+1} = sqrt[k]{5x_n}$ gives
          $$L = sqrt[k]{5L} implies L(L^{k-1}-5) = 0$$



          It cannot be $L = 0$ because $x_n ge x_1 =sqrt[k]{5}, forall ninmathbb{N}$. Therefore $L = sqrt[k-1]{5}$.






          share|cite|improve this answer





















          • Thank you! Induction is indeed a better suit here.
            – roman
            Jan 4 at 11:55
















          2














          We have $x_2 = sqrt[k]{5sqrt[k]{5}} ge sqrt[k]{5} = x_1$. If we assume that $x_{n} ge x_{n-1}$, it follows
          $sqrt[k]{5x_{n}} ge sqrt[k]{5x_{n-1}}$, or $x_{n+1} ge x_n$. Induction implies that $(x_n)_n$ is increasing.



          We have $x_1 = sqrt[k]{5} le sqrt[k-1]{5}$. If we assume $x_n le sqrt[k-1]{5}$, we get $$x_{n+1} = sqrt[k]{5x_n} le sqrt[k]{5sqrt[k-1]{5}} = left(5cdot 5^{frac1{k-1}}right)^{1/k} = sqrt[k-1]{5}$$
          Induction implies that $x_n le sqrt[k-1]{5}, forall ninmathbb{N}$.



          The sequence $(x_n)_n$ is increasing and bounded from above so it converges to some $L = lim_{ntoinfty} x_n$.



          Letting $ntoinfty$ in the relation $x_{n+1} = sqrt[k]{5x_n}$ gives
          $$L = sqrt[k]{5L} implies L(L^{k-1}-5) = 0$$



          It cannot be $L = 0$ because $x_n ge x_1 =sqrt[k]{5}, forall ninmathbb{N}$. Therefore $L = sqrt[k-1]{5}$.






          share|cite|improve this answer





















          • Thank you! Induction is indeed a better suit here.
            – roman
            Jan 4 at 11:55














          2












          2








          2






          We have $x_2 = sqrt[k]{5sqrt[k]{5}} ge sqrt[k]{5} = x_1$. If we assume that $x_{n} ge x_{n-1}$, it follows
          $sqrt[k]{5x_{n}} ge sqrt[k]{5x_{n-1}}$, or $x_{n+1} ge x_n$. Induction implies that $(x_n)_n$ is increasing.



          We have $x_1 = sqrt[k]{5} le sqrt[k-1]{5}$. If we assume $x_n le sqrt[k-1]{5}$, we get $$x_{n+1} = sqrt[k]{5x_n} le sqrt[k]{5sqrt[k-1]{5}} = left(5cdot 5^{frac1{k-1}}right)^{1/k} = sqrt[k-1]{5}$$
          Induction implies that $x_n le sqrt[k-1]{5}, forall ninmathbb{N}$.



          The sequence $(x_n)_n$ is increasing and bounded from above so it converges to some $L = lim_{ntoinfty} x_n$.



          Letting $ntoinfty$ in the relation $x_{n+1} = sqrt[k]{5x_n}$ gives
          $$L = sqrt[k]{5L} implies L(L^{k-1}-5) = 0$$



          It cannot be $L = 0$ because $x_n ge x_1 =sqrt[k]{5}, forall ninmathbb{N}$. Therefore $L = sqrt[k-1]{5}$.






          share|cite|improve this answer












          We have $x_2 = sqrt[k]{5sqrt[k]{5}} ge sqrt[k]{5} = x_1$. If we assume that $x_{n} ge x_{n-1}$, it follows
          $sqrt[k]{5x_{n}} ge sqrt[k]{5x_{n-1}}$, or $x_{n+1} ge x_n$. Induction implies that $(x_n)_n$ is increasing.



          We have $x_1 = sqrt[k]{5} le sqrt[k-1]{5}$. If we assume $x_n le sqrt[k-1]{5}$, we get $$x_{n+1} = sqrt[k]{5x_n} le sqrt[k]{5sqrt[k-1]{5}} = left(5cdot 5^{frac1{k-1}}right)^{1/k} = sqrt[k-1]{5}$$
          Induction implies that $x_n le sqrt[k-1]{5}, forall ninmathbb{N}$.



          The sequence $(x_n)_n$ is increasing and bounded from above so it converges to some $L = lim_{ntoinfty} x_n$.



          Letting $ntoinfty$ in the relation $x_{n+1} = sqrt[k]{5x_n}$ gives
          $$L = sqrt[k]{5L} implies L(L^{k-1}-5) = 0$$



          It cannot be $L = 0$ because $x_n ge x_1 =sqrt[k]{5}, forall ninmathbb{N}$. Therefore $L = sqrt[k-1]{5}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 4 at 11:40









          mechanodroidmechanodroid

          27k62446




          27k62446












          • Thank you! Induction is indeed a better suit here.
            – roman
            Jan 4 at 11:55


















          • Thank you! Induction is indeed a better suit here.
            – roman
            Jan 4 at 11:55
















          Thank you! Induction is indeed a better suit here.
          – roman
          Jan 4 at 11:55




          Thank you! Induction is indeed a better suit here.
          – roman
          Jan 4 at 11:55


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061547%2fverification-of-the-approach-on-finding-the-limit-of-x-n-as-n-to-infty-given%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          1300-talet

          1300-talet

          Display a custom attribute below product name in the front-end Magento 1.9.3.8