In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$
If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?
My reference gives the solution $2$, but I have no clue of where to start ?
My Attempt
$$
cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
$$
geometry trigonometry triangle
add a comment |
If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?
My reference gives the solution $2$, but I have no clue of where to start ?
My Attempt
$$
cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
$$
geometry trigonometry triangle
add a comment |
If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?
My reference gives the solution $2$, but I have no clue of where to start ?
My Attempt
$$
cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
$$
geometry trigonometry triangle
If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?
My reference gives the solution $2$, but I have no clue of where to start ?
My Attempt
$$
cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
$$
geometry trigonometry triangle
geometry trigonometry triangle
edited Jan 4 at 15:59
Michael Rozenberg
97.4k1589188
97.4k1589188
asked Jan 4 at 12:23
ss1729ss1729
1,8491723
1,8491723
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Hint:
$$b+c=3aimpliessin B+sin C=3sin A$$
$$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$
Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$
As $0<A<pi,sinsindfrac A2ne0$
$impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$
add a comment |
In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
$$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
$$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
Also, we can use the following way:
$$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061601%2fin-delta-abc-find-cot-dfracb2-cot-dfracc2-if-bc-3a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:
$$b+c=3aimpliessin B+sin C=3sin A$$
$$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$
Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$
As $0<A<pi,sinsindfrac A2ne0$
$impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$
add a comment |
Hint:
$$b+c=3aimpliessin B+sin C=3sin A$$
$$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$
Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$
As $0<A<pi,sinsindfrac A2ne0$
$impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$
add a comment |
Hint:
$$b+c=3aimpliessin B+sin C=3sin A$$
$$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$
Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$
As $0<A<pi,sinsindfrac A2ne0$
$impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$
Hint:
$$b+c=3aimpliessin B+sin C=3sin A$$
$$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$
Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$
As $0<A<pi,sinsindfrac A2ne0$
$impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$
answered Jan 4 at 12:28
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
add a comment |
add a comment |
In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
$$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
$$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
Also, we can use the following way:
$$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$
add a comment |
In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
$$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
$$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
Also, we can use the following way:
$$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$
add a comment |
In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
$$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
$$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
Also, we can use the following way:
$$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$
In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
$$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
$$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
$$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
Also, we can use the following way:
$$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$
edited Jan 4 at 15:49
answered Jan 4 at 15:43
Michael RozenbergMichael Rozenberg
97.4k1589188
97.4k1589188
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061601%2fin-delta-abc-find-cot-dfracb2-cot-dfracc2-if-bc-3a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown