Find the Range and Inverse of the function $f(x)=sec xtan x+sec^2 x$












0












$begingroup$


Find the Range and Inverse of the function $f(x)=sec xtan x+sec^2 x$



My try:



We have $$y=sec xleft(sec x+tan xright)$$



$$2y=left(sec x+tan x+sec x-tan xright)left(sec x+tan xright)$$



$$2y=left(sec x+tan xright)^2+1$$



So we get:



$$sec x+tan x=sqrt{2y-1}$$ Also



$$sec x-tan x-frac{1}{sqrt{2y-1}}$$



Adding above two results we get:



$$x=sec^{-1}left(frac{sqrt{2y-1}+frac{1}{sqrt{2y-1}}}{2}right)$$



Hence $$f^{-1}(x)=sec^{-1}left(frac{sqrt{2x-1}+frac{1}{sqrt{2x-1}}}{2}right)$$



How to find Range?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Find the Range and Inverse of the function $f(x)=sec xtan x+sec^2 x$



    My try:



    We have $$y=sec xleft(sec x+tan xright)$$



    $$2y=left(sec x+tan x+sec x-tan xright)left(sec x+tan xright)$$



    $$2y=left(sec x+tan xright)^2+1$$



    So we get:



    $$sec x+tan x=sqrt{2y-1}$$ Also



    $$sec x-tan x-frac{1}{sqrt{2y-1}}$$



    Adding above two results we get:



    $$x=sec^{-1}left(frac{sqrt{2y-1}+frac{1}{sqrt{2y-1}}}{2}right)$$



    Hence $$f^{-1}(x)=sec^{-1}left(frac{sqrt{2x-1}+frac{1}{sqrt{2x-1}}}{2}right)$$



    How to find Range?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Find the Range and Inverse of the function $f(x)=sec xtan x+sec^2 x$



      My try:



      We have $$y=sec xleft(sec x+tan xright)$$



      $$2y=left(sec x+tan x+sec x-tan xright)left(sec x+tan xright)$$



      $$2y=left(sec x+tan xright)^2+1$$



      So we get:



      $$sec x+tan x=sqrt{2y-1}$$ Also



      $$sec x-tan x-frac{1}{sqrt{2y-1}}$$



      Adding above two results we get:



      $$x=sec^{-1}left(frac{sqrt{2y-1}+frac{1}{sqrt{2y-1}}}{2}right)$$



      Hence $$f^{-1}(x)=sec^{-1}left(frac{sqrt{2x-1}+frac{1}{sqrt{2x-1}}}{2}right)$$



      How to find Range?










      share|cite|improve this question









      $endgroup$




      Find the Range and Inverse of the function $f(x)=sec xtan x+sec^2 x$



      My try:



      We have $$y=sec xleft(sec x+tan xright)$$



      $$2y=left(sec x+tan x+sec x-tan xright)left(sec x+tan xright)$$



      $$2y=left(sec x+tan xright)^2+1$$



      So we get:



      $$sec x+tan x=sqrt{2y-1}$$ Also



      $$sec x-tan x-frac{1}{sqrt{2y-1}}$$



      Adding above two results we get:



      $$x=sec^{-1}left(frac{sqrt{2y-1}+frac{1}{sqrt{2y-1}}}{2}right)$$



      Hence $$f^{-1}(x)=sec^{-1}left(frac{sqrt{2x-1}+frac{1}{sqrt{2x-1}}}{2}right)$$



      How to find Range?







      algebra-precalculus trigonometry optimization maxima-minima inverse-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 at 4:51









      Umesh shankarUmesh shankar

      2,61931219




      2,61931219






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Hint:



          For $cos xne0iffsin xnepm1$ $$f(x)=dfrac1{1-sin x}$$



          Here $0<1-sin x<2iff f(x)>dfrac12$



          If $y=f(x)=cdots,$
          $$f^{-1}(y)=x=arcsinleft(1-dfrac1yright)$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065812%2ffind-the-range-and-inverse-of-the-function-fx-sec-x-tan-x-sec2-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Hint:



            For $cos xne0iffsin xnepm1$ $$f(x)=dfrac1{1-sin x}$$



            Here $0<1-sin x<2iff f(x)>dfrac12$



            If $y=f(x)=cdots,$
            $$f^{-1}(y)=x=arcsinleft(1-dfrac1yright)$$






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              Hint:



              For $cos xne0iffsin xnepm1$ $$f(x)=dfrac1{1-sin x}$$



              Here $0<1-sin x<2iff f(x)>dfrac12$



              If $y=f(x)=cdots,$
              $$f^{-1}(y)=x=arcsinleft(1-dfrac1yright)$$






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Hint:



                For $cos xne0iffsin xnepm1$ $$f(x)=dfrac1{1-sin x}$$



                Here $0<1-sin x<2iff f(x)>dfrac12$



                If $y=f(x)=cdots,$
                $$f^{-1}(y)=x=arcsinleft(1-dfrac1yright)$$






                share|cite|improve this answer











                $endgroup$



                Hint:



                For $cos xne0iffsin xnepm1$ $$f(x)=dfrac1{1-sin x}$$



                Here $0<1-sin x<2iff f(x)>dfrac12$



                If $y=f(x)=cdots,$
                $$f^{-1}(y)=x=arcsinleft(1-dfrac1yright)$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 8 at 5:05

























                answered Jan 8 at 5:00









                lab bhattacharjeelab bhattacharjee

                224k15156274




                224k15156274






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065812%2ffind-the-range-and-inverse-of-the-function-fx-sec-x-tan-x-sec2-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8