Functions whose input is the same as the output?
Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,
$$large{f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-frac{64}{64+x_2}right)}{,_2F_1left(tfrac14,tfrac34,1,,frac{64}{64+x_2}right)}=tau}$$
$$large{f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-frac{27}{27+x_3}right)}{,_2F_1left(tfrac13,tfrac23,1,,frac{27}{27+x_3}right)}=tau}$$
$$large{f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-frac{16}{16+x_4}right)}{,_2F_1left(tfrac12,tfrac12,1,,frac{16}{16+x_4}right)}=tau}$$
where,
$$x_2 =Big(frac{eta(tau)}{eta(2tau)}Big)^{24},quad
x_3 =Big(frac{eta(tau)}{eta(3tau)}Big)^{12},quad
x_4 =Big(frac{eta(tau)}{eta(4tau)}Big)^{8}$$
So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?
Q: What are other not-so-trivial examples of identity functions?
P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpharight)$ but it uses the j-function, instead of the Dedekind eta function.
complex-analysis functions terminology special-functions hypergeometric-function
add a comment |
Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,
$$large{f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-frac{64}{64+x_2}right)}{,_2F_1left(tfrac14,tfrac34,1,,frac{64}{64+x_2}right)}=tau}$$
$$large{f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-frac{27}{27+x_3}right)}{,_2F_1left(tfrac13,tfrac23,1,,frac{27}{27+x_3}right)}=tau}$$
$$large{f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-frac{16}{16+x_4}right)}{,_2F_1left(tfrac12,tfrac12,1,,frac{16}{16+x_4}right)}=tau}$$
where,
$$x_2 =Big(frac{eta(tau)}{eta(2tau)}Big)^{24},quad
x_3 =Big(frac{eta(tau)}{eta(3tau)}Big)^{12},quad
x_4 =Big(frac{eta(tau)}{eta(4tau)}Big)^{8}$$
So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?
Q: What are other not-so-trivial examples of identity functions?
P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpharight)$ but it uses the j-function, instead of the Dedekind eta function.
complex-analysis functions terminology special-functions hypergeometric-function
add a comment |
Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,
$$large{f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-frac{64}{64+x_2}right)}{,_2F_1left(tfrac14,tfrac34,1,,frac{64}{64+x_2}right)}=tau}$$
$$large{f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-frac{27}{27+x_3}right)}{,_2F_1left(tfrac13,tfrac23,1,,frac{27}{27+x_3}right)}=tau}$$
$$large{f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-frac{16}{16+x_4}right)}{,_2F_1left(tfrac12,tfrac12,1,,frac{16}{16+x_4}right)}=tau}$$
where,
$$x_2 =Big(frac{eta(tau)}{eta(2tau)}Big)^{24},quad
x_3 =Big(frac{eta(tau)}{eta(3tau)}Big)^{12},quad
x_4 =Big(frac{eta(tau)}{eta(4tau)}Big)^{8}$$
So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?
Q: What are other not-so-trivial examples of identity functions?
P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpharight)$ but it uses the j-function, instead of the Dedekind eta function.
complex-analysis functions terminology special-functions hypergeometric-function
Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,
$$large{f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-frac{64}{64+x_2}right)}{,_2F_1left(tfrac14,tfrac34,1,,frac{64}{64+x_2}right)}=tau}$$
$$large{f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-frac{27}{27+x_3}right)}{,_2F_1left(tfrac13,tfrac23,1,,frac{27}{27+x_3}right)}=tau}$$
$$large{f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-frac{16}{16+x_4}right)}{,_2F_1left(tfrac12,tfrac12,1,,frac{16}{16+x_4}right)}=tau}$$
where,
$$x_2 =Big(frac{eta(tau)}{eta(2tau)}Big)^{24},quad
x_3 =Big(frac{eta(tau)}{eta(3tau)}Big)^{12},quad
x_4 =Big(frac{eta(tau)}{eta(4tau)}Big)^{8}$$
So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?
Q: What are other not-so-trivial examples of identity functions?
P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpharight)$ but it uses the j-function, instead of the Dedekind eta function.
complex-analysis functions terminology special-functions hypergeometric-function
complex-analysis functions terminology special-functions hypergeometric-function
edited 17 hours ago
asked 19 hours ago
Tito Piezas III
26.8k365169
26.8k365169
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060410%2ffunctions-whose-input-is-the-same-as-the-output%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060410%2ffunctions-whose-input-is-the-same-as-the-output%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown