how to prove $mathbb{E}[UVmid mathcal{B} ] = Umathbb{E}[Vmid mathcal{B} ]$ if $U$ is $mathcal{B}$-measurable?












0












$begingroup$


How can we prove
$$mathbb{E}[UVmid mathcal{B} ] = Umathbb{E}[Vmid mathcal{B} ]$$



given that both r.v's are positive and $U$ being $mathcal{B}$-measurable?



I use this property pretty often but I don't know how to actually prove it. Either we have to show that $forall B in mathcal{B}$



$$int_{B}UVdmathbb{P} =int_{B}Umathbb{E}[V mid mathcal{B} ] dmathbb{P} $$



or $forall Z text{ that is } mathcal{B}$-measurable and positive



$$mathbb{E}[UVZ] = mathbb{E}[Umathbb{E}[Vmid mathcal{B} ]Z ]$$



but how?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please replace every $backslash$ by mid .
    $endgroup$
    – Did
    Jan 8 at 16:52


















0












$begingroup$


How can we prove
$$mathbb{E}[UVmid mathcal{B} ] = Umathbb{E}[Vmid mathcal{B} ]$$



given that both r.v's are positive and $U$ being $mathcal{B}$-measurable?



I use this property pretty often but I don't know how to actually prove it. Either we have to show that $forall B in mathcal{B}$



$$int_{B}UVdmathbb{P} =int_{B}Umathbb{E}[V mid mathcal{B} ] dmathbb{P} $$



or $forall Z text{ that is } mathcal{B}$-measurable and positive



$$mathbb{E}[UVZ] = mathbb{E}[Umathbb{E}[Vmid mathcal{B} ]Z ]$$



but how?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please replace every $backslash$ by mid .
    $endgroup$
    – Did
    Jan 8 at 16:52
















0












0








0





$begingroup$


How can we prove
$$mathbb{E}[UVmid mathcal{B} ] = Umathbb{E}[Vmid mathcal{B} ]$$



given that both r.v's are positive and $U$ being $mathcal{B}$-measurable?



I use this property pretty often but I don't know how to actually prove it. Either we have to show that $forall B in mathcal{B}$



$$int_{B}UVdmathbb{P} =int_{B}Umathbb{E}[V mid mathcal{B} ] dmathbb{P} $$



or $forall Z text{ that is } mathcal{B}$-measurable and positive



$$mathbb{E}[UVZ] = mathbb{E}[Umathbb{E}[Vmid mathcal{B} ]Z ]$$



but how?










share|cite|improve this question











$endgroup$




How can we prove
$$mathbb{E}[UVmid mathcal{B} ] = Umathbb{E}[Vmid mathcal{B} ]$$



given that both r.v's are positive and $U$ being $mathcal{B}$-measurable?



I use this property pretty often but I don't know how to actually prove it. Either we have to show that $forall B in mathcal{B}$



$$int_{B}UVdmathbb{P} =int_{B}Umathbb{E}[V mid mathcal{B} ] dmathbb{P} $$



or $forall Z text{ that is } mathcal{B}$-measurable and positive



$$mathbb{E}[UVZ] = mathbb{E}[Umathbb{E}[Vmid mathcal{B} ]Z ]$$



but how?







probability-theory conditional-expectation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 21:17









Shashi

7,1731528




7,1731528










asked Jan 8 at 15:54









rapidracimrapidracim

1,5401319




1,5401319








  • 1




    $begingroup$
    Please replace every $backslash$ by mid .
    $endgroup$
    – Did
    Jan 8 at 16:52
















  • 1




    $begingroup$
    Please replace every $backslash$ by mid .
    $endgroup$
    – Did
    Jan 8 at 16:52










1




1




$begingroup$
Please replace every $backslash$ by mid .
$endgroup$
– Did
Jan 8 at 16:52






$begingroup$
Please replace every $backslash$ by mid .
$endgroup$
– Did
Jan 8 at 16:52












1 Answer
1






active

oldest

votes


















1












$begingroup$

Notice that there exists a monotone sequence of simple random variables $U_n$ which are $mathcal B$ - measurable converging point wise to $U$. The random variables $U_n$ can be written as
$$U_n=sum_{k=1}^{N_n}mathbf{1}_{A_{k,n}}$$
where $A_{k, n}inmathcal B $.



Now we have using MCT
begin{align}
int_B UV, dmathbb P&=int_{ B}lim_{ntoinfty} sum_{k=1}^{N_n}mathbf{1}_{A_{k, n}} V, dmathbb P \
&=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} V, dmathbb P \
&=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} mathbb E(Vmid mathcal B), dmathbb P\
&=lim_{ntoinfty} sum_{k=1}^{N_n}int_{ B} mathbf{1}_{A_{k,n}} mathbb E(Vmid mathcal B), dmathbb P
end{align}

And this implies indeed using MCT again that...



You need to figure out how to use MCT yourself though.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066341%2fhow-to-prove-mathbbeuv-mid-mathcalb-u-mathbbev-mid-mathcalb%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Notice that there exists a monotone sequence of simple random variables $U_n$ which are $mathcal B$ - measurable converging point wise to $U$. The random variables $U_n$ can be written as
    $$U_n=sum_{k=1}^{N_n}mathbf{1}_{A_{k,n}}$$
    where $A_{k, n}inmathcal B $.



    Now we have using MCT
    begin{align}
    int_B UV, dmathbb P&=int_{ B}lim_{ntoinfty} sum_{k=1}^{N_n}mathbf{1}_{A_{k, n}} V, dmathbb P \
    &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} V, dmathbb P \
    &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} mathbb E(Vmid mathcal B), dmathbb P\
    &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{ B} mathbf{1}_{A_{k,n}} mathbb E(Vmid mathcal B), dmathbb P
    end{align}

    And this implies indeed using MCT again that...



    You need to figure out how to use MCT yourself though.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Notice that there exists a monotone sequence of simple random variables $U_n$ which are $mathcal B$ - measurable converging point wise to $U$. The random variables $U_n$ can be written as
      $$U_n=sum_{k=1}^{N_n}mathbf{1}_{A_{k,n}}$$
      where $A_{k, n}inmathcal B $.



      Now we have using MCT
      begin{align}
      int_B UV, dmathbb P&=int_{ B}lim_{ntoinfty} sum_{k=1}^{N_n}mathbf{1}_{A_{k, n}} V, dmathbb P \
      &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} V, dmathbb P \
      &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} mathbb E(Vmid mathcal B), dmathbb P\
      &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{ B} mathbf{1}_{A_{k,n}} mathbb E(Vmid mathcal B), dmathbb P
      end{align}

      And this implies indeed using MCT again that...



      You need to figure out how to use MCT yourself though.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Notice that there exists a monotone sequence of simple random variables $U_n$ which are $mathcal B$ - measurable converging point wise to $U$. The random variables $U_n$ can be written as
        $$U_n=sum_{k=1}^{N_n}mathbf{1}_{A_{k,n}}$$
        where $A_{k, n}inmathcal B $.



        Now we have using MCT
        begin{align}
        int_B UV, dmathbb P&=int_{ B}lim_{ntoinfty} sum_{k=1}^{N_n}mathbf{1}_{A_{k, n}} V, dmathbb P \
        &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} V, dmathbb P \
        &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} mathbb E(Vmid mathcal B), dmathbb P\
        &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{ B} mathbf{1}_{A_{k,n}} mathbb E(Vmid mathcal B), dmathbb P
        end{align}

        And this implies indeed using MCT again that...



        You need to figure out how to use MCT yourself though.






        share|cite|improve this answer











        $endgroup$



        Notice that there exists a monotone sequence of simple random variables $U_n$ which are $mathcal B$ - measurable converging point wise to $U$. The random variables $U_n$ can be written as
        $$U_n=sum_{k=1}^{N_n}mathbf{1}_{A_{k,n}}$$
        where $A_{k, n}inmathcal B $.



        Now we have using MCT
        begin{align}
        int_B UV, dmathbb P&=int_{ B}lim_{ntoinfty} sum_{k=1}^{N_n}mathbf{1}_{A_{k, n}} V, dmathbb P \
        &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} V, dmathbb P \
        &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{A_{k, n} cap B} mathbb E(Vmid mathcal B), dmathbb P\
        &=lim_{ntoinfty} sum_{k=1}^{N_n}int_{ B} mathbf{1}_{A_{k,n}} mathbb E(Vmid mathcal B), dmathbb P
        end{align}

        And this implies indeed using MCT again that...



        You need to figure out how to use MCT yourself though.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 8 at 21:15

























        answered Jan 8 at 16:05









        ShashiShashi

        7,1731528




        7,1731528






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066341%2fhow-to-prove-mathbbeuv-mid-mathcalb-u-mathbbev-mid-mathcalb%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8