prove $dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$
$begingroup$
I'm a student and I'm studying linear algebra. in Polar Decomposition we have:
for a linear operator $T$, there exist a linear isometry $S$ that:
$$ T =Ssqrt{T^*T}$$
so if $S$ is a linear transformation then it must be $dim(operatorname{range}(T)) leq dim(operatorname{range}(sqrt{T^*T}))$.
But why?
edit: I think it must be equal, I mean:
$$dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$$
I know that $dim(operatorname{range}(T)) = dim(operatorname{range}(T^*))$ but because of the square root I cannot prove that $dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$.
linear-algebra operator-theory adjoint-operators isometry
$endgroup$
add a comment |
$begingroup$
I'm a student and I'm studying linear algebra. in Polar Decomposition we have:
for a linear operator $T$, there exist a linear isometry $S$ that:
$$ T =Ssqrt{T^*T}$$
so if $S$ is a linear transformation then it must be $dim(operatorname{range}(T)) leq dim(operatorname{range}(sqrt{T^*T}))$.
But why?
edit: I think it must be equal, I mean:
$$dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$$
I know that $dim(operatorname{range}(T)) = dim(operatorname{range}(T^*))$ but because of the square root I cannot prove that $dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$.
linear-algebra operator-theory adjoint-operators isometry
$endgroup$
$begingroup$
If $fcolon Uto V$ and $gcolon Vto W$ are linear maps, then the rank of $gcirc f$ cannot be greater than the ranks of $g$ and $f$.
$endgroup$
– egreg
Jan 6 at 17:24
add a comment |
$begingroup$
I'm a student and I'm studying linear algebra. in Polar Decomposition we have:
for a linear operator $T$, there exist a linear isometry $S$ that:
$$ T =Ssqrt{T^*T}$$
so if $S$ is a linear transformation then it must be $dim(operatorname{range}(T)) leq dim(operatorname{range}(sqrt{T^*T}))$.
But why?
edit: I think it must be equal, I mean:
$$dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$$
I know that $dim(operatorname{range}(T)) = dim(operatorname{range}(T^*))$ but because of the square root I cannot prove that $dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$.
linear-algebra operator-theory adjoint-operators isometry
$endgroup$
I'm a student and I'm studying linear algebra. in Polar Decomposition we have:
for a linear operator $T$, there exist a linear isometry $S$ that:
$$ T =Ssqrt{T^*T}$$
so if $S$ is a linear transformation then it must be $dim(operatorname{range}(T)) leq dim(operatorname{range}(sqrt{T^*T}))$.
But why?
edit: I think it must be equal, I mean:
$$dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$$
I know that $dim(operatorname{range}(T)) = dim(operatorname{range}(T^*))$ but because of the square root I cannot prove that $dim(operatorname{range}(T)) = dim(operatorname{range}(sqrt{T^*T}))$.
linear-algebra operator-theory adjoint-operators isometry
linear-algebra operator-theory adjoint-operators isometry
edited Jan 6 at 23:05
egreg
180k1485202
180k1485202
asked Jan 6 at 17:17
PeymanPeyman
1089
1089
$begingroup$
If $fcolon Uto V$ and $gcolon Vto W$ are linear maps, then the rank of $gcirc f$ cannot be greater than the ranks of $g$ and $f$.
$endgroup$
– egreg
Jan 6 at 17:24
add a comment |
$begingroup$
If $fcolon Uto V$ and $gcolon Vto W$ are linear maps, then the rank of $gcirc f$ cannot be greater than the ranks of $g$ and $f$.
$endgroup$
– egreg
Jan 6 at 17:24
$begingroup$
If $fcolon Uto V$ and $gcolon Vto W$ are linear maps, then the rank of $gcirc f$ cannot be greater than the ranks of $g$ and $f$.
$endgroup$
– egreg
Jan 6 at 17:24
$begingroup$
If $fcolon Uto V$ and $gcolon Vto W$ are linear maps, then the rank of $gcirc f$ cannot be greater than the ranks of $g$ and $f$.
$endgroup$
– egreg
Jan 6 at 17:24
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
As @egreg pointed out, for any linear maps $S,T$, the rank of $ST$ is always less than or equal to that of $T$. To see this, note that by dimension theorem $$dim text{ran} L =dim operatorname{dom} L-dimker Lledim operatorname{dom} L$$ for any linear map $L$. Now, the image of $ST$ can be seen as the image of
$$
Sbig|_{text{ran} T} :text{ran} Tto V,
$$ we can see that $dim text{ran} (ST)le dim text{ran} T$ as wanted. Moreover, equality holds if $dim ker Sbig|_{text{ran}T}=dim [ker Scaptext{ran}T]=0$. (Here, $V$ denotes the vector space where $S,T$ are defined.)
To see that $dim text{ran}T =dim text{ran}(T^*T)$, note that $Tx = 0$ if and only if $T^*Tx =0$, which is saying that $ker T = ker (T^*T)$. Now, by dimension theorem, we have
$$
dim text{ran} T = dim V - dim ker T = dim V - dim ker (T^*T) = dimtext{ran}(T^*T).
$$ (Or we can use the fact that $S$ is an isometry.)
$endgroup$
add a comment |
$begingroup$
If $Tcolon Uto V$ and $Scolon Vto W$ are linear maps between finite dimensional vector spaces, then
$$DeclareMathOperator{range}{range}
dimrange{ST}ledimrange(T)
$$
This follows from the rank-nullity theorem:
begin{align}
dim U&=dimrange(T)+dimker(T) \
dim U&=dimrange(ST)+dimker(ST)
end{align}
Therefore
$$
dimrange(ST)=dimrange(T)+dimker(T)-dimker(ST)ledimrange(T)
$$
because from $ker(T)subseteqker(ST)$ we have $dimker(T)ledimker(ST)$.
In your case you can conclude that
$$
dimrange(T)ledimrange(sqrt{T^*T})
$$
On the other hand, $S$ is an isometry, so it is invertible and
$$
sqrt{T^*T}=S^{-1}T
$$
The same argument as before implies
$$
dimrange(sqrt{T^*T})ledimrange(T)
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064134%2fprove-dim-operatornameranget-dim-operatornamerange-sqrttt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As @egreg pointed out, for any linear maps $S,T$, the rank of $ST$ is always less than or equal to that of $T$. To see this, note that by dimension theorem $$dim text{ran} L =dim operatorname{dom} L-dimker Lledim operatorname{dom} L$$ for any linear map $L$. Now, the image of $ST$ can be seen as the image of
$$
Sbig|_{text{ran} T} :text{ran} Tto V,
$$ we can see that $dim text{ran} (ST)le dim text{ran} T$ as wanted. Moreover, equality holds if $dim ker Sbig|_{text{ran}T}=dim [ker Scaptext{ran}T]=0$. (Here, $V$ denotes the vector space where $S,T$ are defined.)
To see that $dim text{ran}T =dim text{ran}(T^*T)$, note that $Tx = 0$ if and only if $T^*Tx =0$, which is saying that $ker T = ker (T^*T)$. Now, by dimension theorem, we have
$$
dim text{ran} T = dim V - dim ker T = dim V - dim ker (T^*T) = dimtext{ran}(T^*T).
$$ (Or we can use the fact that $S$ is an isometry.)
$endgroup$
add a comment |
$begingroup$
As @egreg pointed out, for any linear maps $S,T$, the rank of $ST$ is always less than or equal to that of $T$. To see this, note that by dimension theorem $$dim text{ran} L =dim operatorname{dom} L-dimker Lledim operatorname{dom} L$$ for any linear map $L$. Now, the image of $ST$ can be seen as the image of
$$
Sbig|_{text{ran} T} :text{ran} Tto V,
$$ we can see that $dim text{ran} (ST)le dim text{ran} T$ as wanted. Moreover, equality holds if $dim ker Sbig|_{text{ran}T}=dim [ker Scaptext{ran}T]=0$. (Here, $V$ denotes the vector space where $S,T$ are defined.)
To see that $dim text{ran}T =dim text{ran}(T^*T)$, note that $Tx = 0$ if and only if $T^*Tx =0$, which is saying that $ker T = ker (T^*T)$. Now, by dimension theorem, we have
$$
dim text{ran} T = dim V - dim ker T = dim V - dim ker (T^*T) = dimtext{ran}(T^*T).
$$ (Or we can use the fact that $S$ is an isometry.)
$endgroup$
add a comment |
$begingroup$
As @egreg pointed out, for any linear maps $S,T$, the rank of $ST$ is always less than or equal to that of $T$. To see this, note that by dimension theorem $$dim text{ran} L =dim operatorname{dom} L-dimker Lledim operatorname{dom} L$$ for any linear map $L$. Now, the image of $ST$ can be seen as the image of
$$
Sbig|_{text{ran} T} :text{ran} Tto V,
$$ we can see that $dim text{ran} (ST)le dim text{ran} T$ as wanted. Moreover, equality holds if $dim ker Sbig|_{text{ran}T}=dim [ker Scaptext{ran}T]=0$. (Here, $V$ denotes the vector space where $S,T$ are defined.)
To see that $dim text{ran}T =dim text{ran}(T^*T)$, note that $Tx = 0$ if and only if $T^*Tx =0$, which is saying that $ker T = ker (T^*T)$. Now, by dimension theorem, we have
$$
dim text{ran} T = dim V - dim ker T = dim V - dim ker (T^*T) = dimtext{ran}(T^*T).
$$ (Or we can use the fact that $S$ is an isometry.)
$endgroup$
As @egreg pointed out, for any linear maps $S,T$, the rank of $ST$ is always less than or equal to that of $T$. To see this, note that by dimension theorem $$dim text{ran} L =dim operatorname{dom} L-dimker Lledim operatorname{dom} L$$ for any linear map $L$. Now, the image of $ST$ can be seen as the image of
$$
Sbig|_{text{ran} T} :text{ran} Tto V,
$$ we can see that $dim text{ran} (ST)le dim text{ran} T$ as wanted. Moreover, equality holds if $dim ker Sbig|_{text{ran}T}=dim [ker Scaptext{ran}T]=0$. (Here, $V$ denotes the vector space where $S,T$ are defined.)
To see that $dim text{ran}T =dim text{ran}(T^*T)$, note that $Tx = 0$ if and only if $T^*Tx =0$, which is saying that $ker T = ker (T^*T)$. Now, by dimension theorem, we have
$$
dim text{ran} T = dim V - dim ker T = dim V - dim ker (T^*T) = dimtext{ran}(T^*T).
$$ (Or we can use the fact that $S$ is an isometry.)
edited Jan 6 at 22:20
answered Jan 6 at 22:15
SongSong
8,416625
8,416625
add a comment |
add a comment |
$begingroup$
If $Tcolon Uto V$ and $Scolon Vto W$ are linear maps between finite dimensional vector spaces, then
$$DeclareMathOperator{range}{range}
dimrange{ST}ledimrange(T)
$$
This follows from the rank-nullity theorem:
begin{align}
dim U&=dimrange(T)+dimker(T) \
dim U&=dimrange(ST)+dimker(ST)
end{align}
Therefore
$$
dimrange(ST)=dimrange(T)+dimker(T)-dimker(ST)ledimrange(T)
$$
because from $ker(T)subseteqker(ST)$ we have $dimker(T)ledimker(ST)$.
In your case you can conclude that
$$
dimrange(T)ledimrange(sqrt{T^*T})
$$
On the other hand, $S$ is an isometry, so it is invertible and
$$
sqrt{T^*T}=S^{-1}T
$$
The same argument as before implies
$$
dimrange(sqrt{T^*T})ledimrange(T)
$$
$endgroup$
add a comment |
$begingroup$
If $Tcolon Uto V$ and $Scolon Vto W$ are linear maps between finite dimensional vector spaces, then
$$DeclareMathOperator{range}{range}
dimrange{ST}ledimrange(T)
$$
This follows from the rank-nullity theorem:
begin{align}
dim U&=dimrange(T)+dimker(T) \
dim U&=dimrange(ST)+dimker(ST)
end{align}
Therefore
$$
dimrange(ST)=dimrange(T)+dimker(T)-dimker(ST)ledimrange(T)
$$
because from $ker(T)subseteqker(ST)$ we have $dimker(T)ledimker(ST)$.
In your case you can conclude that
$$
dimrange(T)ledimrange(sqrt{T^*T})
$$
On the other hand, $S$ is an isometry, so it is invertible and
$$
sqrt{T^*T}=S^{-1}T
$$
The same argument as before implies
$$
dimrange(sqrt{T^*T})ledimrange(T)
$$
$endgroup$
add a comment |
$begingroup$
If $Tcolon Uto V$ and $Scolon Vto W$ are linear maps between finite dimensional vector spaces, then
$$DeclareMathOperator{range}{range}
dimrange{ST}ledimrange(T)
$$
This follows from the rank-nullity theorem:
begin{align}
dim U&=dimrange(T)+dimker(T) \
dim U&=dimrange(ST)+dimker(ST)
end{align}
Therefore
$$
dimrange(ST)=dimrange(T)+dimker(T)-dimker(ST)ledimrange(T)
$$
because from $ker(T)subseteqker(ST)$ we have $dimker(T)ledimker(ST)$.
In your case you can conclude that
$$
dimrange(T)ledimrange(sqrt{T^*T})
$$
On the other hand, $S$ is an isometry, so it is invertible and
$$
sqrt{T^*T}=S^{-1}T
$$
The same argument as before implies
$$
dimrange(sqrt{T^*T})ledimrange(T)
$$
$endgroup$
If $Tcolon Uto V$ and $Scolon Vto W$ are linear maps between finite dimensional vector spaces, then
$$DeclareMathOperator{range}{range}
dimrange{ST}ledimrange(T)
$$
This follows from the rank-nullity theorem:
begin{align}
dim U&=dimrange(T)+dimker(T) \
dim U&=dimrange(ST)+dimker(ST)
end{align}
Therefore
$$
dimrange(ST)=dimrange(T)+dimker(T)-dimker(ST)ledimrange(T)
$$
because from $ker(T)subseteqker(ST)$ we have $dimker(T)ledimker(ST)$.
In your case you can conclude that
$$
dimrange(T)ledimrange(sqrt{T^*T})
$$
On the other hand, $S$ is an isometry, so it is invertible and
$$
sqrt{T^*T}=S^{-1}T
$$
The same argument as before implies
$$
dimrange(sqrt{T^*T})ledimrange(T)
$$
answered Jan 6 at 22:34
egregegreg
180k1485202
180k1485202
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064134%2fprove-dim-operatornameranget-dim-operatornamerange-sqrttt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If $fcolon Uto V$ and $gcolon Vto W$ are linear maps, then the rank of $gcirc f$ cannot be greater than the ranks of $g$ and $f$.
$endgroup$
– egreg
Jan 6 at 17:24