Relation of Roots of Bi-quadratic equation without using Vieta's formula












1












$begingroup$



If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$




I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do










share|cite|improve this question











$endgroup$












  • $begingroup$
    See math.stackexchange.com/questions/3063351/…
    $endgroup$
    – lab bhattacharjee
    Jan 6 at 18:12
















1












$begingroup$



If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$




I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do










share|cite|improve this question











$endgroup$












  • $begingroup$
    See math.stackexchange.com/questions/3063351/…
    $endgroup$
    – lab bhattacharjee
    Jan 6 at 18:12














1












1








1





$begingroup$



If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$




I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do










share|cite|improve this question











$endgroup$





If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$




I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do







polynomials complex-numbers roots






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 18:19









greedoid

38.8k114797




38.8k114797










asked Jan 6 at 17:59









Keshav SharmaKeshav Sharma

985




985












  • $begingroup$
    See math.stackexchange.com/questions/3063351/…
    $endgroup$
    – lab bhattacharjee
    Jan 6 at 18:12


















  • $begingroup$
    See math.stackexchange.com/questions/3063351/…
    $endgroup$
    – lab bhattacharjee
    Jan 6 at 18:12
















$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12




$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12










2 Answers
2






active

oldest

votes


















2












$begingroup$

So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$



$$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$



On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
$$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
    Indeed,
    $$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
    $$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
    $$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
    $$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064194%2frelation-of-roots-of-bi-quadratic-equation-without-using-vietas-formula%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$



      $$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
      thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$



      On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
      $$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$



        $$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
        thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$



        On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
        $$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$



          $$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
          thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$



          On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
          $$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$






          share|cite|improve this answer









          $endgroup$



          So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$



          $$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
          thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$



          On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
          $$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 6 at 18:14









          greedoidgreedoid

          38.8k114797




          38.8k114797























              0












              $begingroup$

              Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
              Indeed,
              $$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
              $$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
              $$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
              $$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
                Indeed,
                $$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
                $$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
                $$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
                $$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
                  Indeed,
                  $$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
                  $$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
                  $$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
                  $$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$






                  share|cite|improve this answer









                  $endgroup$



                  Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
                  Indeed,
                  $$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
                  $$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
                  $$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
                  $$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 6 at 19:21









                  Michael RozenbergMichael Rozenberg

                  98.3k1590188




                  98.3k1590188






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064194%2frelation-of-roots-of-bi-quadratic-equation-without-using-vietas-formula%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      1300-talet

                      1300-talet

                      Display a custom attribute below product name in the front-end Magento 1.9.3.8