Why are the protons in the nucleus not repelled by each other?
Since we know that like charges repel each other and the protons in the nucleus have equal and like charges, but they are held intogether instead of being repelled. Why?
protons
New contributor
add a comment |
Since we know that like charges repel each other and the protons in the nucleus have equal and like charges, but they are held intogether instead of being repelled. Why?
protons
New contributor
6
They indeed are repelled, and that with great force. But there is another force, even greater...
– Ivan Neretin
yesterday
There’s the strong nuclear force that holds them together . It’s even stronger than gravity.
– Aditi
yesterday
Not stronger than gravity when you accumulate three solar masses
– Oscar Lanzi
yesterday
add a comment |
Since we know that like charges repel each other and the protons in the nucleus have equal and like charges, but they are held intogether instead of being repelled. Why?
protons
New contributor
Since we know that like charges repel each other and the protons in the nucleus have equal and like charges, but they are held intogether instead of being repelled. Why?
protons
protons
New contributor
New contributor
edited yesterday
Loong♦
32.6k881166
32.6k881166
New contributor
asked yesterday
user73034
1
1
New contributor
New contributor
6
They indeed are repelled, and that with great force. But there is another force, even greater...
– Ivan Neretin
yesterday
There’s the strong nuclear force that holds them together . It’s even stronger than gravity.
– Aditi
yesterday
Not stronger than gravity when you accumulate three solar masses
– Oscar Lanzi
yesterday
add a comment |
6
They indeed are repelled, and that with great force. But there is another force, even greater...
– Ivan Neretin
yesterday
There’s the strong nuclear force that holds them together . It’s even stronger than gravity.
– Aditi
yesterday
Not stronger than gravity when you accumulate three solar masses
– Oscar Lanzi
yesterday
6
6
They indeed are repelled, and that with great force. But there is another force, even greater...
– Ivan Neretin
yesterday
They indeed are repelled, and that with great force. But there is another force, even greater...
– Ivan Neretin
yesterday
There’s the strong nuclear force that holds them together . It’s even stronger than gravity.
– Aditi
yesterday
There’s the strong nuclear force that holds them together . It’s even stronger than gravity.
– Aditi
yesterday
Not stronger than gravity when you accumulate three solar masses
– Oscar Lanzi
yesterday
Not stronger than gravity when you accumulate three solar masses
– Oscar Lanzi
yesterday
add a comment |
1 Answer
1
active
oldest
votes
Protons in nucleus no doubt are repelled by each other. But we know that an atom is stable. The reason for this is that the protons and the neutrons(together called nucleons) are attracted to each other by a strong for called nuclear force. This force acts only in the distances of orders of angstrom or picometre. As mentioned earlier, not only protons are attracted by this force but the neutrons too are. If the distance increases this force decreases drastically. Also this force depends on the no of particles. This is the reason why heavier elements have higher n/p ratio.
New contributor
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
And so would we.
– Oscar Lanzi
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "431"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
user73034 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f107480%2fwhy-are-the-protons-in-the-nucleus-not-repelled-by-each-other%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Protons in nucleus no doubt are repelled by each other. But we know that an atom is stable. The reason for this is that the protons and the neutrons(together called nucleons) are attracted to each other by a strong for called nuclear force. This force acts only in the distances of orders of angstrom or picometre. As mentioned earlier, not only protons are attracted by this force but the neutrons too are. If the distance increases this force decreases drastically. Also this force depends on the no of particles. This is the reason why heavier elements have higher n/p ratio.
New contributor
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
And so would we.
– Oscar Lanzi
yesterday
add a comment |
Protons in nucleus no doubt are repelled by each other. But we know that an atom is stable. The reason for this is that the protons and the neutrons(together called nucleons) are attracted to each other by a strong for called nuclear force. This force acts only in the distances of orders of angstrom or picometre. As mentioned earlier, not only protons are attracted by this force but the neutrons too are. If the distance increases this force decreases drastically. Also this force depends on the no of particles. This is the reason why heavier elements have higher n/p ratio.
New contributor
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
And so would we.
– Oscar Lanzi
yesterday
add a comment |
Protons in nucleus no doubt are repelled by each other. But we know that an atom is stable. The reason for this is that the protons and the neutrons(together called nucleons) are attracted to each other by a strong for called nuclear force. This force acts only in the distances of orders of angstrom or picometre. As mentioned earlier, not only protons are attracted by this force but the neutrons too are. If the distance increases this force decreases drastically. Also this force depends on the no of particles. This is the reason why heavier elements have higher n/p ratio.
New contributor
Protons in nucleus no doubt are repelled by each other. But we know that an atom is stable. The reason for this is that the protons and the neutrons(together called nucleons) are attracted to each other by a strong for called nuclear force. This force acts only in the distances of orders of angstrom or picometre. As mentioned earlier, not only protons are attracted by this force but the neutrons too are. If the distance increases this force decreases drastically. Also this force depends on the no of particles. This is the reason why heavier elements have higher n/p ratio.
New contributor
New contributor
answered yesterday
Arka Sinha
412
412
New contributor
New contributor
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
And so would we.
– Oscar Lanzi
yesterday
add a comment |
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
And so would we.
– Oscar Lanzi
yesterday
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
What's particularly interesting is that the electrical repulsion between two protons only barely exceeds the attractive (residual) strong nuclear force between them. If the strong nuclear force were a few percent (~2 to 6%) stronger relative to the electromagnetic force, two protons would spontaneously bind to form the diproton, a stable isotope of helium ($ce{^2_2 He}$). This would have massively altered the course of the evolution of the Universe (completely different big bang and stellar nucleosynthesis). Chemistry could be virtually non-existent!
– Nicolau Saker Neto
yesterday
And so would we.
– Oscar Lanzi
yesterday
And so would we.
– Oscar Lanzi
yesterday
add a comment |
user73034 is a new contributor. Be nice, and check out our Code of Conduct.
user73034 is a new contributor. Be nice, and check out our Code of Conduct.
user73034 is a new contributor. Be nice, and check out our Code of Conduct.
user73034 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f107480%2fwhy-are-the-protons-in-the-nucleus-not-repelled-by-each-other%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
They indeed are repelled, and that with great force. But there is another force, even greater...
– Ivan Neretin
yesterday
There’s the strong nuclear force that holds them together . It’s even stronger than gravity.
– Aditi
yesterday
Not stronger than gravity when you accumulate three solar masses
– Oscar Lanzi
yesterday