Calculation of expected value.
Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
left{ begin{array}{ll}
displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
0 & textrm{when $N(omega)=0$,}\
end{array} right.
$$ and assume that $zeta=N-eta$.
Find expected value $Eleft(frac{eta}{zeta +1}right)$.
I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.
expected-value
add a comment |
Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
left{ begin{array}{ll}
displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
0 & textrm{when $N(omega)=0$,}\
end{array} right.
$$ and assume that $zeta=N-eta$.
Find expected value $Eleft(frac{eta}{zeta +1}right)$.
I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.
expected-value
add a comment |
Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
left{ begin{array}{ll}
displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
0 & textrm{when $N(omega)=0$,}\
end{array} right.
$$ and assume that $zeta=N-eta$.
Find expected value $Eleft(frac{eta}{zeta +1}right)$.
I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.
expected-value
Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
left{ begin{array}{ll}
displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
0 & textrm{when $N(omega)=0$,}\
end{array} right.
$$ and assume that $zeta=N-eta$.
Find expected value $Eleft(frac{eta}{zeta +1}right)$.
I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.
expected-value
expected-value
edited Jan 4 at 13:04
A.Fue
asked Jan 4 at 12:46
A.FueA.Fue
65
65
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Under condition $N=n$ random variable $eta$ has binomial distribution
with parameters $n$ and $p$.
This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$
So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$
I leave the rest to you.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061622%2fcalculation-of-expected-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Under condition $N=n$ random variable $eta$ has binomial distribution
with parameters $n$ and $p$.
This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$
So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$
I leave the rest to you.
add a comment |
Under condition $N=n$ random variable $eta$ has binomial distribution
with parameters $n$ and $p$.
This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$
So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$
I leave the rest to you.
add a comment |
Under condition $N=n$ random variable $eta$ has binomial distribution
with parameters $n$ and $p$.
This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$
So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$
I leave the rest to you.
Under condition $N=n$ random variable $eta$ has binomial distribution
with parameters $n$ and $p$.
This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$
So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$
I leave the rest to you.
answered Jan 4 at 13:50
drhabdrhab
98.5k544129
98.5k544129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061622%2fcalculation-of-expected-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown