generating function of numbers of visits up to time n












4














I want to determine the generating function of the numbers of visits up to a specific time. Formally: let ${X_{n}}_{n geq 0}$ be a markov chain on the state space $S = {1,ldots,r}$ with transition matrix $P = (p_{i,j})_{1 leq i,j leq r}$ and initial probability vector $alpha = (alpha_{i} : i in S)$ with $alpha_{i} = mathbb{P}(X_{0} = i)$. Let $q(n_{1},ldots,n_{r})$ be the probability that up to time $n-1$ the state $1$ is visited $n_{1}$-times,$ldots$,state $r$ is visited $n_{r}$-times and $F_{n}(x_{1},ldots,x_{r}) = sum_{n_{1}+ cdots +n_{r} = n}q(n_{1},ldots,n_{r})x_{1}^{n_{1}}cdots x_{r}^{n_{r}}$ be the corresponding generating function of $q(n_{1},ldots,n_{r})$. Now I want to show that
$$
F_{n}(x_{1},ldots,x_{r}) = (alpha_{1}x_{1},ldots,alpha_{r}x_{r}) left( P D_{r}right)^{n-1} e,
$$

where $e = (1,ldots,1)^{intercal}$ and $D$ is given by
$$
D =
begin{bmatrix}
x_{1} && \
& ddots &\
& & x_{r}
end{bmatrix}.
$$

Here is my solution:
$$
begin{align*}
sum_{n_{1} + cdots + n_{r} = n}q(n_{1},ldots,n_{r}) &= sum_{j in I}mathbb{P}(X_{n-1} = j) \
&= sum_{j in I}sum_{i in I}alpha_{i}p_{i,j}^{n-1} \
&= left(sum_{i in I}alpha_{i}p_{i,1}^{n-1},ldots,sum_{i in I}alpha_{i}p_{i,r}^{n-1} right) e \
&= alpha P^{(n-1)} e.
end{align*}
$$

Does this suffice as a proof and is it correct? Thanks for any help!










share|cite|improve this question





























    4














    I want to determine the generating function of the numbers of visits up to a specific time. Formally: let ${X_{n}}_{n geq 0}$ be a markov chain on the state space $S = {1,ldots,r}$ with transition matrix $P = (p_{i,j})_{1 leq i,j leq r}$ and initial probability vector $alpha = (alpha_{i} : i in S)$ with $alpha_{i} = mathbb{P}(X_{0} = i)$. Let $q(n_{1},ldots,n_{r})$ be the probability that up to time $n-1$ the state $1$ is visited $n_{1}$-times,$ldots$,state $r$ is visited $n_{r}$-times and $F_{n}(x_{1},ldots,x_{r}) = sum_{n_{1}+ cdots +n_{r} = n}q(n_{1},ldots,n_{r})x_{1}^{n_{1}}cdots x_{r}^{n_{r}}$ be the corresponding generating function of $q(n_{1},ldots,n_{r})$. Now I want to show that
    $$
    F_{n}(x_{1},ldots,x_{r}) = (alpha_{1}x_{1},ldots,alpha_{r}x_{r}) left( P D_{r}right)^{n-1} e,
    $$

    where $e = (1,ldots,1)^{intercal}$ and $D$ is given by
    $$
    D =
    begin{bmatrix}
    x_{1} && \
    & ddots &\
    & & x_{r}
    end{bmatrix}.
    $$

    Here is my solution:
    $$
    begin{align*}
    sum_{n_{1} + cdots + n_{r} = n}q(n_{1},ldots,n_{r}) &= sum_{j in I}mathbb{P}(X_{n-1} = j) \
    &= sum_{j in I}sum_{i in I}alpha_{i}p_{i,j}^{n-1} \
    &= left(sum_{i in I}alpha_{i}p_{i,1}^{n-1},ldots,sum_{i in I}alpha_{i}p_{i,r}^{n-1} right) e \
    &= alpha P^{(n-1)} e.
    end{align*}
    $$

    Does this suffice as a proof and is it correct? Thanks for any help!










    share|cite|improve this question



























      4












      4








      4







      I want to determine the generating function of the numbers of visits up to a specific time. Formally: let ${X_{n}}_{n geq 0}$ be a markov chain on the state space $S = {1,ldots,r}$ with transition matrix $P = (p_{i,j})_{1 leq i,j leq r}$ and initial probability vector $alpha = (alpha_{i} : i in S)$ with $alpha_{i} = mathbb{P}(X_{0} = i)$. Let $q(n_{1},ldots,n_{r})$ be the probability that up to time $n-1$ the state $1$ is visited $n_{1}$-times,$ldots$,state $r$ is visited $n_{r}$-times and $F_{n}(x_{1},ldots,x_{r}) = sum_{n_{1}+ cdots +n_{r} = n}q(n_{1},ldots,n_{r})x_{1}^{n_{1}}cdots x_{r}^{n_{r}}$ be the corresponding generating function of $q(n_{1},ldots,n_{r})$. Now I want to show that
      $$
      F_{n}(x_{1},ldots,x_{r}) = (alpha_{1}x_{1},ldots,alpha_{r}x_{r}) left( P D_{r}right)^{n-1} e,
      $$

      where $e = (1,ldots,1)^{intercal}$ and $D$ is given by
      $$
      D =
      begin{bmatrix}
      x_{1} && \
      & ddots &\
      & & x_{r}
      end{bmatrix}.
      $$

      Here is my solution:
      $$
      begin{align*}
      sum_{n_{1} + cdots + n_{r} = n}q(n_{1},ldots,n_{r}) &= sum_{j in I}mathbb{P}(X_{n-1} = j) \
      &= sum_{j in I}sum_{i in I}alpha_{i}p_{i,j}^{n-1} \
      &= left(sum_{i in I}alpha_{i}p_{i,1}^{n-1},ldots,sum_{i in I}alpha_{i}p_{i,r}^{n-1} right) e \
      &= alpha P^{(n-1)} e.
      end{align*}
      $$

      Does this suffice as a proof and is it correct? Thanks for any help!










      share|cite|improve this question















      I want to determine the generating function of the numbers of visits up to a specific time. Formally: let ${X_{n}}_{n geq 0}$ be a markov chain on the state space $S = {1,ldots,r}$ with transition matrix $P = (p_{i,j})_{1 leq i,j leq r}$ and initial probability vector $alpha = (alpha_{i} : i in S)$ with $alpha_{i} = mathbb{P}(X_{0} = i)$. Let $q(n_{1},ldots,n_{r})$ be the probability that up to time $n-1$ the state $1$ is visited $n_{1}$-times,$ldots$,state $r$ is visited $n_{r}$-times and $F_{n}(x_{1},ldots,x_{r}) = sum_{n_{1}+ cdots +n_{r} = n}q(n_{1},ldots,n_{r})x_{1}^{n_{1}}cdots x_{r}^{n_{r}}$ be the corresponding generating function of $q(n_{1},ldots,n_{r})$. Now I want to show that
      $$
      F_{n}(x_{1},ldots,x_{r}) = (alpha_{1}x_{1},ldots,alpha_{r}x_{r}) left( P D_{r}right)^{n-1} e,
      $$

      where $e = (1,ldots,1)^{intercal}$ and $D$ is given by
      $$
      D =
      begin{bmatrix}
      x_{1} && \
      & ddots &\
      & & x_{r}
      end{bmatrix}.
      $$

      Here is my solution:
      $$
      begin{align*}
      sum_{n_{1} + cdots + n_{r} = n}q(n_{1},ldots,n_{r}) &= sum_{j in I}mathbb{P}(X_{n-1} = j) \
      &= sum_{j in I}sum_{i in I}alpha_{i}p_{i,j}^{n-1} \
      &= left(sum_{i in I}alpha_{i}p_{i,1}^{n-1},ldots,sum_{i in I}alpha_{i}p_{i,r}^{n-1} right) e \
      &= alpha P^{(n-1)} e.
      end{align*}
      $$

      Does this suffice as a proof and is it correct? Thanks for any help!







      probability probability-theory proof-verification markov-chains generating-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 13:30









      Scientifica

      6,37641335




      6,37641335










      asked Jan 4 at 13:17









      waynewayne

      497113




      497113






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Your computation is correct but it only proves the special case $x_1 = ldots = x_r = 1$.
          To prove the general case, set $$A(n_1, ldots, n_r) = left{sigma colon {0, ldots, n-1} to I ; middle| ; #sigma^{-1}(i) = n_iright}.$$
          Then $$begin{align*} q(n_1,ldots, n_r) &= mathbb{P}big(exists sigma in A(n_1, ldots, n_r), , X_k = sigma(k) text{ for } 0 leq k leq n-1 big) \ &= sum_{sigma in A(n_1, ldots, n_r)} mathbb{P}big( X_k = sigma(k) text{ for } 0 leq k leq n-1big) \ &= sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)). end{align*}$$
          Now we get
          $$begin{align*} F_n(x_1, ldots, x_n) &= sum_{n_1 + ldots + n_r = n}q(n_1,ldots, n_r) x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n} bigg(sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) bigg)x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n \ sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} \ &= sum_{sigma in A} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} end{align*}$$
          where $A = bigcup_{n_1 + cdots + n_r = n} A(n_1, ldots, n_r)$. The last equality is due to the fact that the $A(n_1, ldots, n_r)$ are pairwise disjoint. Notice that $A$ is actually the set of all functions from ${0, ldots, n-1}$ to $I$. This is because if $sigma$ is such a function, then setting $n_i = # sigma^{-1}(i)$ we have $sum_i n_i = # sigma^{-1}(I) = # {0, ldots, n-1 } = n$ and clearly $sigma in A(n_1, ldots, n_r)$. On the other hand, we have $x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} = x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}$ (by counting the number of times that each of the $x_i$ appears in both terms). Therefore
          $$ begin{align*}F_n(x_1, ldots, x_n) = sum_{sigma colon {0, ldots, n-1} to I} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}.end{align*}$$
          This can be rewritten as $$F_n(x_1, ldots, x_n) = sum_{i_0, ldots, i_{n-1} in I} alpha_{i_0}x_{i_0}p(i_0,i_1)x_{i_1}cdots p(i_{n-2}, i_{n-1})x_{i_{n-1}}.$$
          Finally, if you develop the RHS you get the same expression which proves the desired equality.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061641%2fgenerating-function-of-numbers-of-visits-up-to-time-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Your computation is correct but it only proves the special case $x_1 = ldots = x_r = 1$.
            To prove the general case, set $$A(n_1, ldots, n_r) = left{sigma colon {0, ldots, n-1} to I ; middle| ; #sigma^{-1}(i) = n_iright}.$$
            Then $$begin{align*} q(n_1,ldots, n_r) &= mathbb{P}big(exists sigma in A(n_1, ldots, n_r), , X_k = sigma(k) text{ for } 0 leq k leq n-1 big) \ &= sum_{sigma in A(n_1, ldots, n_r)} mathbb{P}big( X_k = sigma(k) text{ for } 0 leq k leq n-1big) \ &= sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)). end{align*}$$
            Now we get
            $$begin{align*} F_n(x_1, ldots, x_n) &= sum_{n_1 + ldots + n_r = n}q(n_1,ldots, n_r) x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n} bigg(sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) bigg)x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n \ sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} \ &= sum_{sigma in A} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} end{align*}$$
            where $A = bigcup_{n_1 + cdots + n_r = n} A(n_1, ldots, n_r)$. The last equality is due to the fact that the $A(n_1, ldots, n_r)$ are pairwise disjoint. Notice that $A$ is actually the set of all functions from ${0, ldots, n-1}$ to $I$. This is because if $sigma$ is such a function, then setting $n_i = # sigma^{-1}(i)$ we have $sum_i n_i = # sigma^{-1}(I) = # {0, ldots, n-1 } = n$ and clearly $sigma in A(n_1, ldots, n_r)$. On the other hand, we have $x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} = x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}$ (by counting the number of times that each of the $x_i$ appears in both terms). Therefore
            $$ begin{align*}F_n(x_1, ldots, x_n) = sum_{sigma colon {0, ldots, n-1} to I} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}.end{align*}$$
            This can be rewritten as $$F_n(x_1, ldots, x_n) = sum_{i_0, ldots, i_{n-1} in I} alpha_{i_0}x_{i_0}p(i_0,i_1)x_{i_1}cdots p(i_{n-2}, i_{n-1})x_{i_{n-1}}.$$
            Finally, if you develop the RHS you get the same expression which proves the desired equality.






            share|cite|improve this answer


























              0














              Your computation is correct but it only proves the special case $x_1 = ldots = x_r = 1$.
              To prove the general case, set $$A(n_1, ldots, n_r) = left{sigma colon {0, ldots, n-1} to I ; middle| ; #sigma^{-1}(i) = n_iright}.$$
              Then $$begin{align*} q(n_1,ldots, n_r) &= mathbb{P}big(exists sigma in A(n_1, ldots, n_r), , X_k = sigma(k) text{ for } 0 leq k leq n-1 big) \ &= sum_{sigma in A(n_1, ldots, n_r)} mathbb{P}big( X_k = sigma(k) text{ for } 0 leq k leq n-1big) \ &= sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)). end{align*}$$
              Now we get
              $$begin{align*} F_n(x_1, ldots, x_n) &= sum_{n_1 + ldots + n_r = n}q(n_1,ldots, n_r) x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n} bigg(sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) bigg)x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n \ sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} \ &= sum_{sigma in A} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} end{align*}$$
              where $A = bigcup_{n_1 + cdots + n_r = n} A(n_1, ldots, n_r)$. The last equality is due to the fact that the $A(n_1, ldots, n_r)$ are pairwise disjoint. Notice that $A$ is actually the set of all functions from ${0, ldots, n-1}$ to $I$. This is because if $sigma$ is such a function, then setting $n_i = # sigma^{-1}(i)$ we have $sum_i n_i = # sigma^{-1}(I) = # {0, ldots, n-1 } = n$ and clearly $sigma in A(n_1, ldots, n_r)$. On the other hand, we have $x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} = x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}$ (by counting the number of times that each of the $x_i$ appears in both terms). Therefore
              $$ begin{align*}F_n(x_1, ldots, x_n) = sum_{sigma colon {0, ldots, n-1} to I} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}.end{align*}$$
              This can be rewritten as $$F_n(x_1, ldots, x_n) = sum_{i_0, ldots, i_{n-1} in I} alpha_{i_0}x_{i_0}p(i_0,i_1)x_{i_1}cdots p(i_{n-2}, i_{n-1})x_{i_{n-1}}.$$
              Finally, if you develop the RHS you get the same expression which proves the desired equality.






              share|cite|improve this answer
























                0












                0








                0






                Your computation is correct but it only proves the special case $x_1 = ldots = x_r = 1$.
                To prove the general case, set $$A(n_1, ldots, n_r) = left{sigma colon {0, ldots, n-1} to I ; middle| ; #sigma^{-1}(i) = n_iright}.$$
                Then $$begin{align*} q(n_1,ldots, n_r) &= mathbb{P}big(exists sigma in A(n_1, ldots, n_r), , X_k = sigma(k) text{ for } 0 leq k leq n-1 big) \ &= sum_{sigma in A(n_1, ldots, n_r)} mathbb{P}big( X_k = sigma(k) text{ for } 0 leq k leq n-1big) \ &= sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)). end{align*}$$
                Now we get
                $$begin{align*} F_n(x_1, ldots, x_n) &= sum_{n_1 + ldots + n_r = n}q(n_1,ldots, n_r) x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n} bigg(sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) bigg)x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n \ sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} \ &= sum_{sigma in A} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} end{align*}$$
                where $A = bigcup_{n_1 + cdots + n_r = n} A(n_1, ldots, n_r)$. The last equality is due to the fact that the $A(n_1, ldots, n_r)$ are pairwise disjoint. Notice that $A$ is actually the set of all functions from ${0, ldots, n-1}$ to $I$. This is because if $sigma$ is such a function, then setting $n_i = # sigma^{-1}(i)$ we have $sum_i n_i = # sigma^{-1}(I) = # {0, ldots, n-1 } = n$ and clearly $sigma in A(n_1, ldots, n_r)$. On the other hand, we have $x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} = x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}$ (by counting the number of times that each of the $x_i$ appears in both terms). Therefore
                $$ begin{align*}F_n(x_1, ldots, x_n) = sum_{sigma colon {0, ldots, n-1} to I} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}.end{align*}$$
                This can be rewritten as $$F_n(x_1, ldots, x_n) = sum_{i_0, ldots, i_{n-1} in I} alpha_{i_0}x_{i_0}p(i_0,i_1)x_{i_1}cdots p(i_{n-2}, i_{n-1})x_{i_{n-1}}.$$
                Finally, if you develop the RHS you get the same expression which proves the desired equality.






                share|cite|improve this answer












                Your computation is correct but it only proves the special case $x_1 = ldots = x_r = 1$.
                To prove the general case, set $$A(n_1, ldots, n_r) = left{sigma colon {0, ldots, n-1} to I ; middle| ; #sigma^{-1}(i) = n_iright}.$$
                Then $$begin{align*} q(n_1,ldots, n_r) &= mathbb{P}big(exists sigma in A(n_1, ldots, n_r), , X_k = sigma(k) text{ for } 0 leq k leq n-1 big) \ &= sum_{sigma in A(n_1, ldots, n_r)} mathbb{P}big( X_k = sigma(k) text{ for } 0 leq k leq n-1big) \ &= sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)). end{align*}$$
                Now we get
                $$begin{align*} F_n(x_1, ldots, x_n) &= sum_{n_1 + ldots + n_r = n}q(n_1,ldots, n_r) x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n} bigg(sum_{sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) bigg)x_1^{n_1} cdots x_r^{n_r} \ &= sum_{n_1 + ldots + n_r = n \ sigma in A(n_1, ldots, n_r)} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} \ &= sum_{sigma in A} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} end{align*}$$
                where $A = bigcup_{n_1 + cdots + n_r = n} A(n_1, ldots, n_r)$. The last equality is due to the fact that the $A(n_1, ldots, n_r)$ are pairwise disjoint. Notice that $A$ is actually the set of all functions from ${0, ldots, n-1}$ to $I$. This is because if $sigma$ is such a function, then setting $n_i = # sigma^{-1}(i)$ we have $sum_i n_i = # sigma^{-1}(I) = # {0, ldots, n-1 } = n$ and clearly $sigma in A(n_1, ldots, n_r)$. On the other hand, we have $x_1^{#sigma^{-1}(1)} cdots x_r^{#sigma^{-1}(r)} = x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}$ (by counting the number of times that each of the $x_i$ appears in both terms). Therefore
                $$ begin{align*}F_n(x_1, ldots, x_n) = sum_{sigma colon {0, ldots, n-1} to I} alpha_{sigma(0)}p(sigma(0),sigma(1))cdots p(sigma(n-2), sigma(n-1)) x_{sigma(0)}x_{sigma(1)} cdots x_{sigma(n-1)}.end{align*}$$
                This can be rewritten as $$F_n(x_1, ldots, x_n) = sum_{i_0, ldots, i_{n-1} in I} alpha_{i_0}x_{i_0}p(i_0,i_1)x_{i_1}cdots p(i_{n-2}, i_{n-1})x_{i_{n-1}}.$$
                Finally, if you develop the RHS you get the same expression which proves the desired equality.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 5 at 22:04









                MichhMichh

                22316




                22316






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061641%2fgenerating-function-of-numbers-of-visits-up-to-time-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8