Join continuous PDF how to choose interval
I have the joint pdf
$f_{x,y} (x,y) = 3/4 x $ if $0<x<y<2$
Now if I want to find the marginal pdfs $f_x $ and $ f_y$
How do I choose which interval to use when I integrate?
I know the answers are:
$f_x (x) = 3/4 x (2-x)$ if $0<x<2$
$f_y (y) = 3/8 y^2 $ if $0<y<2$
probability statistics
add a comment |
I have the joint pdf
$f_{x,y} (x,y) = 3/4 x $ if $0<x<y<2$
Now if I want to find the marginal pdfs $f_x $ and $ f_y$
How do I choose which interval to use when I integrate?
I know the answers are:
$f_x (x) = 3/4 x (2-x)$ if $0<x<2$
$f_y (y) = 3/8 y^2 $ if $0<y<2$
probability statistics
add a comment |
I have the joint pdf
$f_{x,y} (x,y) = 3/4 x $ if $0<x<y<2$
Now if I want to find the marginal pdfs $f_x $ and $ f_y$
How do I choose which interval to use when I integrate?
I know the answers are:
$f_x (x) = 3/4 x (2-x)$ if $0<x<2$
$f_y (y) = 3/8 y^2 $ if $0<y<2$
probability statistics
I have the joint pdf
$f_{x,y} (x,y) = 3/4 x $ if $0<x<y<2$
Now if I want to find the marginal pdfs $f_x $ and $ f_y$
How do I choose which interval to use when I integrate?
I know the answers are:
$f_x (x) = 3/4 x (2-x)$ if $0<x<2$
$f_y (y) = 3/8 y^2 $ if $0<y<2$
probability statistics
probability statistics
asked Jan 4 at 12:48
WintherWinther
247
247
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Formally there is no choosing:$$f_X(x)=int_{-infty}^{infty}f_X(x,y);dy$$
We can substitute $f_{X,Y}=[0<x<y<2]frac34x$ where $[text{condition on }x,y]$ is a function $mathbb R^2tomathbb R$ that takes value $1$ if the condition is satisfied and take value $0$ otherwise.
Then for fixed $x$:$$f_X(x)=int_{-infty}^{infty}[0<x<y<2]frac34x;dy=frac34xint_{-infty}^{infty}[0<x<y<2];dy$$
Now we discern cases:
If $xnotin(0,2)$ then the integrand is $0$ for every $y$ so that $f_X(x)=0$.
If $xin(0,2)$ then $int_{-infty}^{infty}[0<x<y<2];dy=int_x^2dy=2-x$ so that $f(x)=frac34x(2-x)$.
The first equality is probably the part you label as "choosing which interval".
It rests on the observation that for $ynotin(x,2)$ the integrand is $0$.
The same principle works for finding: $$f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx$$for a fixed $y$.
If $ynotin(0,2)$ then the integrand is $0$ for every $x$ so that $f_Y(y)=0$.
If $yin(0,2)$ then $f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx=int_0^yfrac34xdx=[frac38x^2]_0^y=frac38y^2$.
add a comment |
To get the marginal densities from the joint density, you "integrate out" each variable. In this case, the region $0<x<y<2$ is a triangle. To see this, draw the horizontal boundary lines $x=0$, $y=2$, and $y=x$. The triangle is then the region overlapped by $x>0,y<2, x<y$.
For this region, we see that for a fixed $y$, $x$ varies from $0$ to $y$, hence
$$f_{Y}(y)=int_{0}^{y}f_{X,Y}(x,y) dx=int_{0}^{y}frac{3}{4}x dx=frac{3}{8}x^{2}biggrvert^{x=y}_{x=0}=frac{3}{8}y^{2}$$
Similarly, if we fix a value for $x$, $y$ varies from $x$ to $2$
$$f_{X}(x)=int_{x}^{2}f_{X,Y}(x,y) dy=int_{x}^{2}frac{3}{4}x dy=frac{3}{4}xybiggrvert^{y=2}_{y=x}=frac{3}{4}x(2-x)$$
If the region is unclear, draw a picture and it should make more sense.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061624%2fjoin-continuous-pdf-how-to-choose-interval%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Formally there is no choosing:$$f_X(x)=int_{-infty}^{infty}f_X(x,y);dy$$
We can substitute $f_{X,Y}=[0<x<y<2]frac34x$ where $[text{condition on }x,y]$ is a function $mathbb R^2tomathbb R$ that takes value $1$ if the condition is satisfied and take value $0$ otherwise.
Then for fixed $x$:$$f_X(x)=int_{-infty}^{infty}[0<x<y<2]frac34x;dy=frac34xint_{-infty}^{infty}[0<x<y<2];dy$$
Now we discern cases:
If $xnotin(0,2)$ then the integrand is $0$ for every $y$ so that $f_X(x)=0$.
If $xin(0,2)$ then $int_{-infty}^{infty}[0<x<y<2];dy=int_x^2dy=2-x$ so that $f(x)=frac34x(2-x)$.
The first equality is probably the part you label as "choosing which interval".
It rests on the observation that for $ynotin(x,2)$ the integrand is $0$.
The same principle works for finding: $$f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx$$for a fixed $y$.
If $ynotin(0,2)$ then the integrand is $0$ for every $x$ so that $f_Y(y)=0$.
If $yin(0,2)$ then $f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx=int_0^yfrac34xdx=[frac38x^2]_0^y=frac38y^2$.
add a comment |
Formally there is no choosing:$$f_X(x)=int_{-infty}^{infty}f_X(x,y);dy$$
We can substitute $f_{X,Y}=[0<x<y<2]frac34x$ where $[text{condition on }x,y]$ is a function $mathbb R^2tomathbb R$ that takes value $1$ if the condition is satisfied and take value $0$ otherwise.
Then for fixed $x$:$$f_X(x)=int_{-infty}^{infty}[0<x<y<2]frac34x;dy=frac34xint_{-infty}^{infty}[0<x<y<2];dy$$
Now we discern cases:
If $xnotin(0,2)$ then the integrand is $0$ for every $y$ so that $f_X(x)=0$.
If $xin(0,2)$ then $int_{-infty}^{infty}[0<x<y<2];dy=int_x^2dy=2-x$ so that $f(x)=frac34x(2-x)$.
The first equality is probably the part you label as "choosing which interval".
It rests on the observation that for $ynotin(x,2)$ the integrand is $0$.
The same principle works for finding: $$f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx$$for a fixed $y$.
If $ynotin(0,2)$ then the integrand is $0$ for every $x$ so that $f_Y(y)=0$.
If $yin(0,2)$ then $f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx=int_0^yfrac34xdx=[frac38x^2]_0^y=frac38y^2$.
add a comment |
Formally there is no choosing:$$f_X(x)=int_{-infty}^{infty}f_X(x,y);dy$$
We can substitute $f_{X,Y}=[0<x<y<2]frac34x$ where $[text{condition on }x,y]$ is a function $mathbb R^2tomathbb R$ that takes value $1$ if the condition is satisfied and take value $0$ otherwise.
Then for fixed $x$:$$f_X(x)=int_{-infty}^{infty}[0<x<y<2]frac34x;dy=frac34xint_{-infty}^{infty}[0<x<y<2];dy$$
Now we discern cases:
If $xnotin(0,2)$ then the integrand is $0$ for every $y$ so that $f_X(x)=0$.
If $xin(0,2)$ then $int_{-infty}^{infty}[0<x<y<2];dy=int_x^2dy=2-x$ so that $f(x)=frac34x(2-x)$.
The first equality is probably the part you label as "choosing which interval".
It rests on the observation that for $ynotin(x,2)$ the integrand is $0$.
The same principle works for finding: $$f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx$$for a fixed $y$.
If $ynotin(0,2)$ then the integrand is $0$ for every $x$ so that $f_Y(y)=0$.
If $yin(0,2)$ then $f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx=int_0^yfrac34xdx=[frac38x^2]_0^y=frac38y^2$.
Formally there is no choosing:$$f_X(x)=int_{-infty}^{infty}f_X(x,y);dy$$
We can substitute $f_{X,Y}=[0<x<y<2]frac34x$ where $[text{condition on }x,y]$ is a function $mathbb R^2tomathbb R$ that takes value $1$ if the condition is satisfied and take value $0$ otherwise.
Then for fixed $x$:$$f_X(x)=int_{-infty}^{infty}[0<x<y<2]frac34x;dy=frac34xint_{-infty}^{infty}[0<x<y<2];dy$$
Now we discern cases:
If $xnotin(0,2)$ then the integrand is $0$ for every $y$ so that $f_X(x)=0$.
If $xin(0,2)$ then $int_{-infty}^{infty}[0<x<y<2];dy=int_x^2dy=2-x$ so that $f(x)=frac34x(2-x)$.
The first equality is probably the part you label as "choosing which interval".
It rests on the observation that for $ynotin(x,2)$ the integrand is $0$.
The same principle works for finding: $$f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx$$for a fixed $y$.
If $ynotin(0,2)$ then the integrand is $0$ for every $x$ so that $f_Y(y)=0$.
If $yin(0,2)$ then $f_Y(y)=int_{-infty}^{infty}[0<x<y<2]frac34x;dx=int_0^yfrac34xdx=[frac38x^2]_0^y=frac38y^2$.
edited Jan 5 at 21:29
answered Jan 4 at 13:11
drhabdrhab
98.5k544129
98.5k544129
add a comment |
add a comment |
To get the marginal densities from the joint density, you "integrate out" each variable. In this case, the region $0<x<y<2$ is a triangle. To see this, draw the horizontal boundary lines $x=0$, $y=2$, and $y=x$. The triangle is then the region overlapped by $x>0,y<2, x<y$.
For this region, we see that for a fixed $y$, $x$ varies from $0$ to $y$, hence
$$f_{Y}(y)=int_{0}^{y}f_{X,Y}(x,y) dx=int_{0}^{y}frac{3}{4}x dx=frac{3}{8}x^{2}biggrvert^{x=y}_{x=0}=frac{3}{8}y^{2}$$
Similarly, if we fix a value for $x$, $y$ varies from $x$ to $2$
$$f_{X}(x)=int_{x}^{2}f_{X,Y}(x,y) dy=int_{x}^{2}frac{3}{4}x dy=frac{3}{4}xybiggrvert^{y=2}_{y=x}=frac{3}{4}x(2-x)$$
If the region is unclear, draw a picture and it should make more sense.
add a comment |
To get the marginal densities from the joint density, you "integrate out" each variable. In this case, the region $0<x<y<2$ is a triangle. To see this, draw the horizontal boundary lines $x=0$, $y=2$, and $y=x$. The triangle is then the region overlapped by $x>0,y<2, x<y$.
For this region, we see that for a fixed $y$, $x$ varies from $0$ to $y$, hence
$$f_{Y}(y)=int_{0}^{y}f_{X,Y}(x,y) dx=int_{0}^{y}frac{3}{4}x dx=frac{3}{8}x^{2}biggrvert^{x=y}_{x=0}=frac{3}{8}y^{2}$$
Similarly, if we fix a value for $x$, $y$ varies from $x$ to $2$
$$f_{X}(x)=int_{x}^{2}f_{X,Y}(x,y) dy=int_{x}^{2}frac{3}{4}x dy=frac{3}{4}xybiggrvert^{y=2}_{y=x}=frac{3}{4}x(2-x)$$
If the region is unclear, draw a picture and it should make more sense.
add a comment |
To get the marginal densities from the joint density, you "integrate out" each variable. In this case, the region $0<x<y<2$ is a triangle. To see this, draw the horizontal boundary lines $x=0$, $y=2$, and $y=x$. The triangle is then the region overlapped by $x>0,y<2, x<y$.
For this region, we see that for a fixed $y$, $x$ varies from $0$ to $y$, hence
$$f_{Y}(y)=int_{0}^{y}f_{X,Y}(x,y) dx=int_{0}^{y}frac{3}{4}x dx=frac{3}{8}x^{2}biggrvert^{x=y}_{x=0}=frac{3}{8}y^{2}$$
Similarly, if we fix a value for $x$, $y$ varies from $x$ to $2$
$$f_{X}(x)=int_{x}^{2}f_{X,Y}(x,y) dy=int_{x}^{2}frac{3}{4}x dy=frac{3}{4}xybiggrvert^{y=2}_{y=x}=frac{3}{4}x(2-x)$$
If the region is unclear, draw a picture and it should make more sense.
To get the marginal densities from the joint density, you "integrate out" each variable. In this case, the region $0<x<y<2$ is a triangle. To see this, draw the horizontal boundary lines $x=0$, $y=2$, and $y=x$. The triangle is then the region overlapped by $x>0,y<2, x<y$.
For this region, we see that for a fixed $y$, $x$ varies from $0$ to $y$, hence
$$f_{Y}(y)=int_{0}^{y}f_{X,Y}(x,y) dx=int_{0}^{y}frac{3}{4}x dx=frac{3}{8}x^{2}biggrvert^{x=y}_{x=0}=frac{3}{8}y^{2}$$
Similarly, if we fix a value for $x$, $y$ varies from $x$ to $2$
$$f_{X}(x)=int_{x}^{2}f_{X,Y}(x,y) dy=int_{x}^{2}frac{3}{4}x dy=frac{3}{4}xybiggrvert^{y=2}_{y=x}=frac{3}{4}x(2-x)$$
If the region is unclear, draw a picture and it should make more sense.
answered Jan 4 at 13:16
pwerthpwerth
1,747411
1,747411
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061624%2fjoin-continuous-pdf-how-to-choose-interval%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown