How to evaluate this nonelementary integral?
Let $x>0$. I have to prove that
$$
int_{0}^{infty}frac{cos x}{x^p}dx=frac{pi}{2Gamma(p)cos(pfrac{pi}{2})}tag{1}
$$
by converting the integral on the left side to a double integral using the expression below:
$$
frac{1}{x^p}=frac{1}{Gamma(p)}int_{0}^{infty}e^{-xt}t^{p-1}dttag{2}
$$
By plugging $(2)$ into $(1)$ I get the following double integral:
$$
frac{1}{Gamma(p)}int_{0}^{infty}int_{0}^{infty}e^{-xt}t^{p-1}cos xdtdxtag{3}
$$
However, I unable to proceed any further as I am unclear as to what method should I use in order to compute this integral. I thought that an appropriate change of variables could transform it into a product of two gamma functions but I cannot see how that would work. Any help would be greatly appreciated.
multivariable-calculus gamma-function
add a comment |
Let $x>0$. I have to prove that
$$
int_{0}^{infty}frac{cos x}{x^p}dx=frac{pi}{2Gamma(p)cos(pfrac{pi}{2})}tag{1}
$$
by converting the integral on the left side to a double integral using the expression below:
$$
frac{1}{x^p}=frac{1}{Gamma(p)}int_{0}^{infty}e^{-xt}t^{p-1}dttag{2}
$$
By plugging $(2)$ into $(1)$ I get the following double integral:
$$
frac{1}{Gamma(p)}int_{0}^{infty}int_{0}^{infty}e^{-xt}t^{p-1}cos xdtdxtag{3}
$$
However, I unable to proceed any further as I am unclear as to what method should I use in order to compute this integral. I thought that an appropriate change of variables could transform it into a product of two gamma functions but I cannot see how that would work. Any help would be greatly appreciated.
multivariable-calculus gamma-function
1
Change the order of integration, then use any method from Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$
– projectilemotion
Nov 24 '18 at 21:36
add a comment |
Let $x>0$. I have to prove that
$$
int_{0}^{infty}frac{cos x}{x^p}dx=frac{pi}{2Gamma(p)cos(pfrac{pi}{2})}tag{1}
$$
by converting the integral on the left side to a double integral using the expression below:
$$
frac{1}{x^p}=frac{1}{Gamma(p)}int_{0}^{infty}e^{-xt}t^{p-1}dttag{2}
$$
By plugging $(2)$ into $(1)$ I get the following double integral:
$$
frac{1}{Gamma(p)}int_{0}^{infty}int_{0}^{infty}e^{-xt}t^{p-1}cos xdtdxtag{3}
$$
However, I unable to proceed any further as I am unclear as to what method should I use in order to compute this integral. I thought that an appropriate change of variables could transform it into a product of two gamma functions but I cannot see how that would work. Any help would be greatly appreciated.
multivariable-calculus gamma-function
Let $x>0$. I have to prove that
$$
int_{0}^{infty}frac{cos x}{x^p}dx=frac{pi}{2Gamma(p)cos(pfrac{pi}{2})}tag{1}
$$
by converting the integral on the left side to a double integral using the expression below:
$$
frac{1}{x^p}=frac{1}{Gamma(p)}int_{0}^{infty}e^{-xt}t^{p-1}dttag{2}
$$
By plugging $(2)$ into $(1)$ I get the following double integral:
$$
frac{1}{Gamma(p)}int_{0}^{infty}int_{0}^{infty}e^{-xt}t^{p-1}cos xdtdxtag{3}
$$
However, I unable to proceed any further as I am unclear as to what method should I use in order to compute this integral. I thought that an appropriate change of variables could transform it into a product of two gamma functions but I cannot see how that would work. Any help would be greatly appreciated.
multivariable-calculus gamma-function
multivariable-calculus gamma-function
edited Nov 24 '18 at 21:15
Key Flex
7,69241232
7,69241232
asked Nov 24 '18 at 21:14
PhillipPhillip
604
604
1
Change the order of integration, then use any method from Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$
– projectilemotion
Nov 24 '18 at 21:36
add a comment |
1
Change the order of integration, then use any method from Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$
– projectilemotion
Nov 24 '18 at 21:36
1
1
Change the order of integration, then use any method from Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$
– projectilemotion
Nov 24 '18 at 21:36
Change the order of integration, then use any method from Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$
– projectilemotion
Nov 24 '18 at 21:36
add a comment |
4 Answers
4
active
oldest
votes
The Laplace transform of $cos x$ is $frac{s}{1+s^2}$ and the inverse Laplace transform of $frac{1}{x^p}$ is $frac{s^{p-1}}{Gamma(p)}$, hence
$$ int_{0}^{+infty}frac{cos x}{x^p},dx = frac{1}{Gamma(p)}int_{0}^{+infty}frac{s^p}{s^2+1},ds=frac{1}{Gamma(p)}int_{0}^{pi/2}left(tan uright)^p,du $$
equals
$$ begin{eqnarray*}frac{1}{Gamma(p)}int_{0}^{1} v^p (1-v^2)^{-(p+1)/2},dv&=&frac{1}{2,Gamma(p)}int_{0}^{1}w^{(p-1)/2}(1-w)^{-(p+1)/2},dw\& =& frac{Bleft(tfrac{1+p}{2},tfrac{1-p}{2}right)}{2,Gamma(p)}end{eqnarray*} $$
or
$$ frac{Gammaleft(frac{1+p}{2}right)Gammaleft(frac{1-p}{2}right)}{2,Gamma(p)}= frac{pi}{2,Gamma(p)sinleft(frac{pi}{2}(p+1)right)}=frac{pi}{2,Gamma(p)cosleft(frac{pi p}{2}right)}$$
as wanted. We have exploited the Beta function and the reflection formula for the $Gamma$ function.
add a comment |
Your given integral is closely related to the Mellin transform and can be evaluated by using Ramanujan's Master Theorem.
Ramanujan's Master Theorem
Let $f(x)$ be an analytic function with a MacLaurin Expansion of the form
$$f(x)=sum_{k=0}^{infty}frac{phi(k)}{k!}(-x)^k$$then the Mellin Transform of this function is given by
$$int_0^{infty}x^{s-1}f(x)dx=Gamma(s)phi(-s)$$
Therefore expand the cosine function as Taylor series expansion to get
$$begin{align}
mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx
end{align}$$
In order to bring the above integral in the wanted form for the usage of Ramanujan's Master Theorem apply the substitution $x^2=u$. So we further get
$$begin{align}
mathfrak{I}=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}frac{1}{(2n)!}(-x^2)^ndx\
&=int_0^{infty}u^{-p/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^nfrac{du}{2sqrt{u}}\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^ndu\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu
end{align}$$
By using the relation $Gamma(n)=(n-1)!$ which is valid for all $ninmathbb N$ we can consider the last integral as an application of Ramanujan's Master Theorem with $s=-frac{p-1}2$ and $phi(n)=frac{Gamma(n+1)}{Gamma(2n+1)}$. By finally using the Theorem we obtain
$$begin{align}
mathfrak{I}=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu&=frac12Gammaleft(-frac{p-1}2right)frac{Gammaleft(frac{p-1}2+1right)}{Gammaleft(2left(frac{p-1}2right)+1right)}\
&=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)
end{align}$$
Now by applying Euler's Reflection Formula with $z=1+frac{p-1}2$ we moreover get
$$begin{align}
mathfrak{I}=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)&=frac1{2Gamma(p)}frac{pi}{sinleft(pileft(1+frac{p-1}2right)right)}\
&=frac1{2Gamma(p)}frac{pi}{sinleft(frac{ppi}2+frac{pi}2right)}\
&=frac1{2Gamma(p)}frac{pi}{cosleft(frac{ppi}2right)}
end{align}$$
where within the last step the fundamental relation $sinleft(x+frac{pi}2right)=cos(x)$ was used. Thus for the original integral $mathfrak{I}$ we get
$$mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx=frac{pi}{2Gamma(p)cosleft(pfrac{pi}2right)}$$
add a comment |
Hint: $displaystyleint_{0}^{infty}frac{cos x}{x^p}dx= text{Real part of}:int_{0}^{infty}frac{e^{iz}}{z^p}dz$ and use residue theorem. This has a pole of order $p$ hence the term $Gamma (p)$ in the denominator.
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
|
show 1 more comment
So let us follow your initial line of thought and convert the integral to a double integral. As you correctly observe, as
$$frac{1}{x^p} = frac{1}{Gamma (p)} int_0^infty e^{-xt} t^{p - 1} , dt,$$
which, by the way, is just the Laplace transform for the function $x^{p -1}$, as a double integral your integral can be rewritten as
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty int_0^infty e^{-xt} cos x t^{p - 1} , dt , dx,$$
or
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty t^{p - 1} int_0^infty e^{-xt} cos x , dx , dt,$$
after changing the order of integration.
The inner $x$-integral can be readily found. Either using integration by parts twice, or recognising the integral as the Laplace transform for the function $cos x$, as
$$int_0^infty e^{-xt} cos x , dx = frac{t}{1 + t^2},$$
we have
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty frac{t^p}{1 + t^2} , dt.$$
Enforcing a substitution of $t mapsto sqrt{t}$ leads to
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p}{2} - frac{1}{2}}}{1 + t} , dt = frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p + 1}{2} - 1}}{(1 + t)^{frac{p + 1}{2} + frac{1 - p}{2}}}.
end{align}
As this is exactly of the form of the Beta function (see the second of the integral representations in the link) we have
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} text{B} left (frac{p + 1}{2}, frac{1 - p}{2} right )\
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left (frac{1}{2} - frac{p}{2} right ) \
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left [1 - left (frac{p}{2} + frac{1}{2} right ) right ] \
&= frac{1}{2 Gamma (p)} frac{pi}{sin (p + 1)pi/2} qquad (*)\
&= frac{pi}{2 Gamma (p) cos left (frac{pi p}{2} right )},
end{align}
as required. Note Euler's reflection formula was used in ($*$).
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012090%2fhow-to-evaluate-this-nonelementary-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
The Laplace transform of $cos x$ is $frac{s}{1+s^2}$ and the inverse Laplace transform of $frac{1}{x^p}$ is $frac{s^{p-1}}{Gamma(p)}$, hence
$$ int_{0}^{+infty}frac{cos x}{x^p},dx = frac{1}{Gamma(p)}int_{0}^{+infty}frac{s^p}{s^2+1},ds=frac{1}{Gamma(p)}int_{0}^{pi/2}left(tan uright)^p,du $$
equals
$$ begin{eqnarray*}frac{1}{Gamma(p)}int_{0}^{1} v^p (1-v^2)^{-(p+1)/2},dv&=&frac{1}{2,Gamma(p)}int_{0}^{1}w^{(p-1)/2}(1-w)^{-(p+1)/2},dw\& =& frac{Bleft(tfrac{1+p}{2},tfrac{1-p}{2}right)}{2,Gamma(p)}end{eqnarray*} $$
or
$$ frac{Gammaleft(frac{1+p}{2}right)Gammaleft(frac{1-p}{2}right)}{2,Gamma(p)}= frac{pi}{2,Gamma(p)sinleft(frac{pi}{2}(p+1)right)}=frac{pi}{2,Gamma(p)cosleft(frac{pi p}{2}right)}$$
as wanted. We have exploited the Beta function and the reflection formula for the $Gamma$ function.
add a comment |
The Laplace transform of $cos x$ is $frac{s}{1+s^2}$ and the inverse Laplace transform of $frac{1}{x^p}$ is $frac{s^{p-1}}{Gamma(p)}$, hence
$$ int_{0}^{+infty}frac{cos x}{x^p},dx = frac{1}{Gamma(p)}int_{0}^{+infty}frac{s^p}{s^2+1},ds=frac{1}{Gamma(p)}int_{0}^{pi/2}left(tan uright)^p,du $$
equals
$$ begin{eqnarray*}frac{1}{Gamma(p)}int_{0}^{1} v^p (1-v^2)^{-(p+1)/2},dv&=&frac{1}{2,Gamma(p)}int_{0}^{1}w^{(p-1)/2}(1-w)^{-(p+1)/2},dw\& =& frac{Bleft(tfrac{1+p}{2},tfrac{1-p}{2}right)}{2,Gamma(p)}end{eqnarray*} $$
or
$$ frac{Gammaleft(frac{1+p}{2}right)Gammaleft(frac{1-p}{2}right)}{2,Gamma(p)}= frac{pi}{2,Gamma(p)sinleft(frac{pi}{2}(p+1)right)}=frac{pi}{2,Gamma(p)cosleft(frac{pi p}{2}right)}$$
as wanted. We have exploited the Beta function and the reflection formula for the $Gamma$ function.
add a comment |
The Laplace transform of $cos x$ is $frac{s}{1+s^2}$ and the inverse Laplace transform of $frac{1}{x^p}$ is $frac{s^{p-1}}{Gamma(p)}$, hence
$$ int_{0}^{+infty}frac{cos x}{x^p},dx = frac{1}{Gamma(p)}int_{0}^{+infty}frac{s^p}{s^2+1},ds=frac{1}{Gamma(p)}int_{0}^{pi/2}left(tan uright)^p,du $$
equals
$$ begin{eqnarray*}frac{1}{Gamma(p)}int_{0}^{1} v^p (1-v^2)^{-(p+1)/2},dv&=&frac{1}{2,Gamma(p)}int_{0}^{1}w^{(p-1)/2}(1-w)^{-(p+1)/2},dw\& =& frac{Bleft(tfrac{1+p}{2},tfrac{1-p}{2}right)}{2,Gamma(p)}end{eqnarray*} $$
or
$$ frac{Gammaleft(frac{1+p}{2}right)Gammaleft(frac{1-p}{2}right)}{2,Gamma(p)}= frac{pi}{2,Gamma(p)sinleft(frac{pi}{2}(p+1)right)}=frac{pi}{2,Gamma(p)cosleft(frac{pi p}{2}right)}$$
as wanted. We have exploited the Beta function and the reflection formula for the $Gamma$ function.
The Laplace transform of $cos x$ is $frac{s}{1+s^2}$ and the inverse Laplace transform of $frac{1}{x^p}$ is $frac{s^{p-1}}{Gamma(p)}$, hence
$$ int_{0}^{+infty}frac{cos x}{x^p},dx = frac{1}{Gamma(p)}int_{0}^{+infty}frac{s^p}{s^2+1},ds=frac{1}{Gamma(p)}int_{0}^{pi/2}left(tan uright)^p,du $$
equals
$$ begin{eqnarray*}frac{1}{Gamma(p)}int_{0}^{1} v^p (1-v^2)^{-(p+1)/2},dv&=&frac{1}{2,Gamma(p)}int_{0}^{1}w^{(p-1)/2}(1-w)^{-(p+1)/2},dw\& =& frac{Bleft(tfrac{1+p}{2},tfrac{1-p}{2}right)}{2,Gamma(p)}end{eqnarray*} $$
or
$$ frac{Gammaleft(frac{1+p}{2}right)Gammaleft(frac{1-p}{2}right)}{2,Gamma(p)}= frac{pi}{2,Gamma(p)sinleft(frac{pi}{2}(p+1)right)}=frac{pi}{2,Gamma(p)cosleft(frac{pi p}{2}right)}$$
as wanted. We have exploited the Beta function and the reflection formula for the $Gamma$ function.
answered Nov 24 '18 at 21:27
Jack D'AurizioJack D'Aurizio
287k33280658
287k33280658
add a comment |
add a comment |
Your given integral is closely related to the Mellin transform and can be evaluated by using Ramanujan's Master Theorem.
Ramanujan's Master Theorem
Let $f(x)$ be an analytic function with a MacLaurin Expansion of the form
$$f(x)=sum_{k=0}^{infty}frac{phi(k)}{k!}(-x)^k$$then the Mellin Transform of this function is given by
$$int_0^{infty}x^{s-1}f(x)dx=Gamma(s)phi(-s)$$
Therefore expand the cosine function as Taylor series expansion to get
$$begin{align}
mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx
end{align}$$
In order to bring the above integral in the wanted form for the usage of Ramanujan's Master Theorem apply the substitution $x^2=u$. So we further get
$$begin{align}
mathfrak{I}=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}frac{1}{(2n)!}(-x^2)^ndx\
&=int_0^{infty}u^{-p/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^nfrac{du}{2sqrt{u}}\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^ndu\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu
end{align}$$
By using the relation $Gamma(n)=(n-1)!$ which is valid for all $ninmathbb N$ we can consider the last integral as an application of Ramanujan's Master Theorem with $s=-frac{p-1}2$ and $phi(n)=frac{Gamma(n+1)}{Gamma(2n+1)}$. By finally using the Theorem we obtain
$$begin{align}
mathfrak{I}=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu&=frac12Gammaleft(-frac{p-1}2right)frac{Gammaleft(frac{p-1}2+1right)}{Gammaleft(2left(frac{p-1}2right)+1right)}\
&=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)
end{align}$$
Now by applying Euler's Reflection Formula with $z=1+frac{p-1}2$ we moreover get
$$begin{align}
mathfrak{I}=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)&=frac1{2Gamma(p)}frac{pi}{sinleft(pileft(1+frac{p-1}2right)right)}\
&=frac1{2Gamma(p)}frac{pi}{sinleft(frac{ppi}2+frac{pi}2right)}\
&=frac1{2Gamma(p)}frac{pi}{cosleft(frac{ppi}2right)}
end{align}$$
where within the last step the fundamental relation $sinleft(x+frac{pi}2right)=cos(x)$ was used. Thus for the original integral $mathfrak{I}$ we get
$$mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx=frac{pi}{2Gamma(p)cosleft(pfrac{pi}2right)}$$
add a comment |
Your given integral is closely related to the Mellin transform and can be evaluated by using Ramanujan's Master Theorem.
Ramanujan's Master Theorem
Let $f(x)$ be an analytic function with a MacLaurin Expansion of the form
$$f(x)=sum_{k=0}^{infty}frac{phi(k)}{k!}(-x)^k$$then the Mellin Transform of this function is given by
$$int_0^{infty}x^{s-1}f(x)dx=Gamma(s)phi(-s)$$
Therefore expand the cosine function as Taylor series expansion to get
$$begin{align}
mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx
end{align}$$
In order to bring the above integral in the wanted form for the usage of Ramanujan's Master Theorem apply the substitution $x^2=u$. So we further get
$$begin{align}
mathfrak{I}=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}frac{1}{(2n)!}(-x^2)^ndx\
&=int_0^{infty}u^{-p/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^nfrac{du}{2sqrt{u}}\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^ndu\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu
end{align}$$
By using the relation $Gamma(n)=(n-1)!$ which is valid for all $ninmathbb N$ we can consider the last integral as an application of Ramanujan's Master Theorem with $s=-frac{p-1}2$ and $phi(n)=frac{Gamma(n+1)}{Gamma(2n+1)}$. By finally using the Theorem we obtain
$$begin{align}
mathfrak{I}=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu&=frac12Gammaleft(-frac{p-1}2right)frac{Gammaleft(frac{p-1}2+1right)}{Gammaleft(2left(frac{p-1}2right)+1right)}\
&=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)
end{align}$$
Now by applying Euler's Reflection Formula with $z=1+frac{p-1}2$ we moreover get
$$begin{align}
mathfrak{I}=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)&=frac1{2Gamma(p)}frac{pi}{sinleft(pileft(1+frac{p-1}2right)right)}\
&=frac1{2Gamma(p)}frac{pi}{sinleft(frac{ppi}2+frac{pi}2right)}\
&=frac1{2Gamma(p)}frac{pi}{cosleft(frac{ppi}2right)}
end{align}$$
where within the last step the fundamental relation $sinleft(x+frac{pi}2right)=cos(x)$ was used. Thus for the original integral $mathfrak{I}$ we get
$$mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx=frac{pi}{2Gamma(p)cosleft(pfrac{pi}2right)}$$
add a comment |
Your given integral is closely related to the Mellin transform and can be evaluated by using Ramanujan's Master Theorem.
Ramanujan's Master Theorem
Let $f(x)$ be an analytic function with a MacLaurin Expansion of the form
$$f(x)=sum_{k=0}^{infty}frac{phi(k)}{k!}(-x)^k$$then the Mellin Transform of this function is given by
$$int_0^{infty}x^{s-1}f(x)dx=Gamma(s)phi(-s)$$
Therefore expand the cosine function as Taylor series expansion to get
$$begin{align}
mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx
end{align}$$
In order to bring the above integral in the wanted form for the usage of Ramanujan's Master Theorem apply the substitution $x^2=u$. So we further get
$$begin{align}
mathfrak{I}=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}frac{1}{(2n)!}(-x^2)^ndx\
&=int_0^{infty}u^{-p/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^nfrac{du}{2sqrt{u}}\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^ndu\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu
end{align}$$
By using the relation $Gamma(n)=(n-1)!$ which is valid for all $ninmathbb N$ we can consider the last integral as an application of Ramanujan's Master Theorem with $s=-frac{p-1}2$ and $phi(n)=frac{Gamma(n+1)}{Gamma(2n+1)}$. By finally using the Theorem we obtain
$$begin{align}
mathfrak{I}=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu&=frac12Gammaleft(-frac{p-1}2right)frac{Gammaleft(frac{p-1}2+1right)}{Gammaleft(2left(frac{p-1}2right)+1right)}\
&=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)
end{align}$$
Now by applying Euler's Reflection Formula with $z=1+frac{p-1}2$ we moreover get
$$begin{align}
mathfrak{I}=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)&=frac1{2Gamma(p)}frac{pi}{sinleft(pileft(1+frac{p-1}2right)right)}\
&=frac1{2Gamma(p)}frac{pi}{sinleft(frac{ppi}2+frac{pi}2right)}\
&=frac1{2Gamma(p)}frac{pi}{cosleft(frac{ppi}2right)}
end{align}$$
where within the last step the fundamental relation $sinleft(x+frac{pi}2right)=cos(x)$ was used. Thus for the original integral $mathfrak{I}$ we get
$$mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx=frac{pi}{2Gamma(p)cosleft(pfrac{pi}2right)}$$
Your given integral is closely related to the Mellin transform and can be evaluated by using Ramanujan's Master Theorem.
Ramanujan's Master Theorem
Let $f(x)$ be an analytic function with a MacLaurin Expansion of the form
$$f(x)=sum_{k=0}^{infty}frac{phi(k)}{k!}(-x)^k$$then the Mellin Transform of this function is given by
$$int_0^{infty}x^{s-1}f(x)dx=Gamma(s)phi(-s)$$
Therefore expand the cosine function as Taylor series expansion to get
$$begin{align}
mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx
end{align}$$
In order to bring the above integral in the wanted form for the usage of Ramanujan's Master Theorem apply the substitution $x^2=u$. So we further get
$$begin{align}
mathfrak{I}=int_0^{infty}x^{-p}sum_{n=0}^{infty}(-1)^nfrac{x^{2n}}{(2n)!}dx&=int_0^{infty}x^{-p}sum_{n=0}^{infty}frac{1}{(2n)!}(-x^2)^ndx\
&=int_0^{infty}u^{-p/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^nfrac{du}{2sqrt{u}}\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{1}{(2n)!}(-u)^ndu\
&=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu
end{align}$$
By using the relation $Gamma(n)=(n-1)!$ which is valid for all $ninmathbb N$ we can consider the last integral as an application of Ramanujan's Master Theorem with $s=-frac{p-1}2$ and $phi(n)=frac{Gamma(n+1)}{Gamma(2n+1)}$. By finally using the Theorem we obtain
$$begin{align}
mathfrak{I}=frac12int_0^{infty}u^{-(p+1)/2}sum_{n=0}^{infty}frac{n!/(2n)!}{n!}(-u)^ndu&=frac12Gammaleft(-frac{p-1}2right)frac{Gammaleft(frac{p-1}2+1right)}{Gammaleft(2left(frac{p-1}2right)+1right)}\
&=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)
end{align}$$
Now by applying Euler's Reflection Formula with $z=1+frac{p-1}2$ we moreover get
$$begin{align}
mathfrak{I}=frac1{2Gamma(p)}Gammaleft(1+frac{p-1}2right)Gammaleft(-frac{p-1}2right)&=frac1{2Gamma(p)}frac{pi}{sinleft(pileft(1+frac{p-1}2right)right)}\
&=frac1{2Gamma(p)}frac{pi}{sinleft(frac{ppi}2+frac{pi}2right)}\
&=frac1{2Gamma(p)}frac{pi}{cosleft(frac{ppi}2right)}
end{align}$$
where within the last step the fundamental relation $sinleft(x+frac{pi}2right)=cos(x)$ was used. Thus for the original integral $mathfrak{I}$ we get
$$mathfrak{I}=int_0^{infty}cos(x)x^{-p}dx=frac{pi}{2Gamma(p)cosleft(pfrac{pi}2right)}$$
edited 11 hours ago
answered Nov 24 '18 at 21:42
mrtaurhomrtaurho
4,07721133
4,07721133
add a comment |
add a comment |
Hint: $displaystyleint_{0}^{infty}frac{cos x}{x^p}dx= text{Real part of}:int_{0}^{infty}frac{e^{iz}}{z^p}dz$ and use residue theorem. This has a pole of order $p$ hence the term $Gamma (p)$ in the denominator.
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
|
show 1 more comment
Hint: $displaystyleint_{0}^{infty}frac{cos x}{x^p}dx= text{Real part of}:int_{0}^{infty}frac{e^{iz}}{z^p}dz$ and use residue theorem. This has a pole of order $p$ hence the term $Gamma (p)$ in the denominator.
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
|
show 1 more comment
Hint: $displaystyleint_{0}^{infty}frac{cos x}{x^p}dx= text{Real part of}:int_{0}^{infty}frac{e^{iz}}{z^p}dz$ and use residue theorem. This has a pole of order $p$ hence the term $Gamma (p)$ in the denominator.
Hint: $displaystyleint_{0}^{infty}frac{cos x}{x^p}dx= text{Real part of}:int_{0}^{infty}frac{e^{iz}}{z^p}dz$ and use residue theorem. This has a pole of order $p$ hence the term $Gamma (p)$ in the denominator.
answered Nov 24 '18 at 21:22
Yadati KiranYadati Kiran
1,692619
1,692619
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
|
show 1 more comment
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
This only works for integral $p$, right?
– AccidentalFourierTransform
Nov 24 '18 at 22:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@AccidentalFourierTransform: Your comment makes me wonder whether there is a way to bootstrap from integer $p$ to the complex $p$...
– user21820
Nov 25 '18 at 4:13
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@user21820 Something in the spirit of the Identity theorem, or more generally Analytic continuation, I guess...
– AccidentalFourierTransform
Nov 25 '18 at 4:16
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@AccidentalFourierTransform: But here the answer is a meromorphic function of $p$, and we don't even have an accumulation point. So do you have a real proof? =)
– user21820
Nov 25 '18 at 4:22
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
@user21820 Oh, no, not at all. I was just pointing out that Yidati's answer was only valid for integer $p$. I didn't want to suggest that I have a better answer.
– AccidentalFourierTransform
Nov 25 '18 at 4:26
|
show 1 more comment
So let us follow your initial line of thought and convert the integral to a double integral. As you correctly observe, as
$$frac{1}{x^p} = frac{1}{Gamma (p)} int_0^infty e^{-xt} t^{p - 1} , dt,$$
which, by the way, is just the Laplace transform for the function $x^{p -1}$, as a double integral your integral can be rewritten as
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty int_0^infty e^{-xt} cos x t^{p - 1} , dt , dx,$$
or
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty t^{p - 1} int_0^infty e^{-xt} cos x , dx , dt,$$
after changing the order of integration.
The inner $x$-integral can be readily found. Either using integration by parts twice, or recognising the integral as the Laplace transform for the function $cos x$, as
$$int_0^infty e^{-xt} cos x , dx = frac{t}{1 + t^2},$$
we have
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty frac{t^p}{1 + t^2} , dt.$$
Enforcing a substitution of $t mapsto sqrt{t}$ leads to
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p}{2} - frac{1}{2}}}{1 + t} , dt = frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p + 1}{2} - 1}}{(1 + t)^{frac{p + 1}{2} + frac{1 - p}{2}}}.
end{align}
As this is exactly of the form of the Beta function (see the second of the integral representations in the link) we have
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} text{B} left (frac{p + 1}{2}, frac{1 - p}{2} right )\
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left (frac{1}{2} - frac{p}{2} right ) \
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left [1 - left (frac{p}{2} + frac{1}{2} right ) right ] \
&= frac{1}{2 Gamma (p)} frac{pi}{sin (p + 1)pi/2} qquad (*)\
&= frac{pi}{2 Gamma (p) cos left (frac{pi p}{2} right )},
end{align}
as required. Note Euler's reflection formula was used in ($*$).
add a comment |
So let us follow your initial line of thought and convert the integral to a double integral. As you correctly observe, as
$$frac{1}{x^p} = frac{1}{Gamma (p)} int_0^infty e^{-xt} t^{p - 1} , dt,$$
which, by the way, is just the Laplace transform for the function $x^{p -1}$, as a double integral your integral can be rewritten as
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty int_0^infty e^{-xt} cos x t^{p - 1} , dt , dx,$$
or
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty t^{p - 1} int_0^infty e^{-xt} cos x , dx , dt,$$
after changing the order of integration.
The inner $x$-integral can be readily found. Either using integration by parts twice, or recognising the integral as the Laplace transform for the function $cos x$, as
$$int_0^infty e^{-xt} cos x , dx = frac{t}{1 + t^2},$$
we have
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty frac{t^p}{1 + t^2} , dt.$$
Enforcing a substitution of $t mapsto sqrt{t}$ leads to
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p}{2} - frac{1}{2}}}{1 + t} , dt = frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p + 1}{2} - 1}}{(1 + t)^{frac{p + 1}{2} + frac{1 - p}{2}}}.
end{align}
As this is exactly of the form of the Beta function (see the second of the integral representations in the link) we have
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} text{B} left (frac{p + 1}{2}, frac{1 - p}{2} right )\
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left (frac{1}{2} - frac{p}{2} right ) \
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left [1 - left (frac{p}{2} + frac{1}{2} right ) right ] \
&= frac{1}{2 Gamma (p)} frac{pi}{sin (p + 1)pi/2} qquad (*)\
&= frac{pi}{2 Gamma (p) cos left (frac{pi p}{2} right )},
end{align}
as required. Note Euler's reflection formula was used in ($*$).
add a comment |
So let us follow your initial line of thought and convert the integral to a double integral. As you correctly observe, as
$$frac{1}{x^p} = frac{1}{Gamma (p)} int_0^infty e^{-xt} t^{p - 1} , dt,$$
which, by the way, is just the Laplace transform for the function $x^{p -1}$, as a double integral your integral can be rewritten as
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty int_0^infty e^{-xt} cos x t^{p - 1} , dt , dx,$$
or
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty t^{p - 1} int_0^infty e^{-xt} cos x , dx , dt,$$
after changing the order of integration.
The inner $x$-integral can be readily found. Either using integration by parts twice, or recognising the integral as the Laplace transform for the function $cos x$, as
$$int_0^infty e^{-xt} cos x , dx = frac{t}{1 + t^2},$$
we have
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty frac{t^p}{1 + t^2} , dt.$$
Enforcing a substitution of $t mapsto sqrt{t}$ leads to
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p}{2} - frac{1}{2}}}{1 + t} , dt = frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p + 1}{2} - 1}}{(1 + t)^{frac{p + 1}{2} + frac{1 - p}{2}}}.
end{align}
As this is exactly of the form of the Beta function (see the second of the integral representations in the link) we have
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} text{B} left (frac{p + 1}{2}, frac{1 - p}{2} right )\
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left (frac{1}{2} - frac{p}{2} right ) \
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left [1 - left (frac{p}{2} + frac{1}{2} right ) right ] \
&= frac{1}{2 Gamma (p)} frac{pi}{sin (p + 1)pi/2} qquad (*)\
&= frac{pi}{2 Gamma (p) cos left (frac{pi p}{2} right )},
end{align}
as required. Note Euler's reflection formula was used in ($*$).
So let us follow your initial line of thought and convert the integral to a double integral. As you correctly observe, as
$$frac{1}{x^p} = frac{1}{Gamma (p)} int_0^infty e^{-xt} t^{p - 1} , dt,$$
which, by the way, is just the Laplace transform for the function $x^{p -1}$, as a double integral your integral can be rewritten as
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty int_0^infty e^{-xt} cos x t^{p - 1} , dt , dx,$$
or
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty t^{p - 1} int_0^infty e^{-xt} cos x , dx , dt,$$
after changing the order of integration.
The inner $x$-integral can be readily found. Either using integration by parts twice, or recognising the integral as the Laplace transform for the function $cos x$, as
$$int_0^infty e^{-xt} cos x , dx = frac{t}{1 + t^2},$$
we have
$$int_0^infty frac{cos x}{x^p} , dx = frac{1}{Gamma (p)} int_0^infty frac{t^p}{1 + t^2} , dt.$$
Enforcing a substitution of $t mapsto sqrt{t}$ leads to
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p}{2} - frac{1}{2}}}{1 + t} , dt = frac{1}{2 Gamma (p)} int_0^infty frac{t^{frac{p + 1}{2} - 1}}{(1 + t)^{frac{p + 1}{2} + frac{1 - p}{2}}}.
end{align}
As this is exactly of the form of the Beta function (see the second of the integral representations in the link) we have
begin{align}
int_0^infty frac{cos x}{x^p} , dx &= frac{1}{2 Gamma (p)} text{B} left (frac{p + 1}{2}, frac{1 - p}{2} right )\
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left (frac{1}{2} - frac{p}{2} right ) \
&= frac{1}{2 Gamma (p)} Gamma left (frac{p}{2} + frac{1}{2} right ) Gamma left [1 - left (frac{p}{2} + frac{1}{2} right ) right ] \
&= frac{1}{2 Gamma (p)} frac{pi}{sin (p + 1)pi/2} qquad (*)\
&= frac{pi}{2 Gamma (p) cos left (frac{pi p}{2} right )},
end{align}
as required. Note Euler's reflection formula was used in ($*$).
answered Jan 4 at 10:01
omegadotomegadot
4,7522727
4,7522727
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012090%2fhow-to-evaluate-this-nonelementary-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Change the order of integration, then use any method from Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$
– projectilemotion
Nov 24 '18 at 21:36