Identity with repeatedly taking the commutator of a ring element
This is taken from Jacobson's Basic Algebra 2e, it's 2.1.5
If $a$ and $b$ are elements of a ring, define $a^{(0)} =a, a^{(1)} = [a,b] = ab-ba$ and $a^{(k)}=[a^{(k-1)},b]$ Prove the following formula: $$sum_{i=0}^k b^i a b^{k-i} = sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}$$
So, I want to use induction to prove this and have verified it for k=1 and k=2. I've worked on the left hand side and gotten $$sum_{i=0}^k b^i a b^{k-i} =(sum_{i=0}^{k-1} b^i a b^{(k-1)-i} )b + b^k a $$
The next part would be to make $$ sum_{j=0}^{k-1} {k choose j} b^{(k-1)-j}a^{(j)}$$ appear on the right hand side so that I can apply the inductive hypothesis. The only thing I can think of would be to use ${n+1 choose k}={n choose k } + {n choose k-1}$. Maybe I've made an error but I believe this gives $$sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}=b(sum_{j=0}^{k-1} {k choose j+1} b^{(k-1)-j}a^{(j)}) + sum_{j=0}^k {k choose j}b^{k-j}a^{(j)} + {k choose k+1}b^0 a^{(k)}$$
While the last term is $0$, because the extra $b$ appears on opposite sides of the first term, I can't easily equate them and cancel. So I think I'm barking up the wrong tree trying to manipulate the right hand side of the formula in this way.
My question is two fold: how to prove this identity, and what does this composition of the commutator $a^{(j)}$ represent? If it eventually hits 0 is that still some kind of measure for how near $a$ and $b$ are to commuting? If anybody has seen this identity before and it has some usefulness beyond the exercise of proving it, I would also love to hear that.
ring-theory noncommutative-algebra
add a comment |
This is taken from Jacobson's Basic Algebra 2e, it's 2.1.5
If $a$ and $b$ are elements of a ring, define $a^{(0)} =a, a^{(1)} = [a,b] = ab-ba$ and $a^{(k)}=[a^{(k-1)},b]$ Prove the following formula: $$sum_{i=0}^k b^i a b^{k-i} = sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}$$
So, I want to use induction to prove this and have verified it for k=1 and k=2. I've worked on the left hand side and gotten $$sum_{i=0}^k b^i a b^{k-i} =(sum_{i=0}^{k-1} b^i a b^{(k-1)-i} )b + b^k a $$
The next part would be to make $$ sum_{j=0}^{k-1} {k choose j} b^{(k-1)-j}a^{(j)}$$ appear on the right hand side so that I can apply the inductive hypothesis. The only thing I can think of would be to use ${n+1 choose k}={n choose k } + {n choose k-1}$. Maybe I've made an error but I believe this gives $$sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}=b(sum_{j=0}^{k-1} {k choose j+1} b^{(k-1)-j}a^{(j)}) + sum_{j=0}^k {k choose j}b^{k-j}a^{(j)} + {k choose k+1}b^0 a^{(k)}$$
While the last term is $0$, because the extra $b$ appears on opposite sides of the first term, I can't easily equate them and cancel. So I think I'm barking up the wrong tree trying to manipulate the right hand side of the formula in this way.
My question is two fold: how to prove this identity, and what does this composition of the commutator $a^{(j)}$ represent? If it eventually hits 0 is that still some kind of measure for how near $a$ and $b$ are to commuting? If anybody has seen this identity before and it has some usefulness beyond the exercise of proving it, I would also love to hear that.
ring-theory noncommutative-algebra
I haven't properly thought about your approach yet, but here is the "standard" trick for this sort of identity: Let $A$ be the ring. Let $L : A to A$ be the map sending each $x$ to $bx$, and let $R : A to A$ be the map sending each $x$ to $xb$. Then, the operators $L$ and $R$ are $mathbb{Z}$-linear and commute. But the left hand side of your identity is $sumlimits_{i=0}^k L^i R^{k-i} a$, whereas the right hand side is $sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j a$. So it remains to ...
– darij grinberg
Nov 20 '18 at 6:19
... prove that $sumlimits_{i=0}^k L^i R^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j$. This should follow from binomial-style manipulations (treating $L$ and $R$ as two arbitrary commuting elements).
– darij grinberg
Nov 20 '18 at 6:19
Ah, yes, the identity $sumlimits_{i=0}^k x^i y^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} x^{k-j} left(y-xright)^j$ holds for two arbitrary commuting elements $x$ and $y$. To prove it, it suffices to do so when $x$ and $y$ are two commuting indeterminates in a polynomial ring. Multiply both sides by $x-y$ (this is allowed, since $x-y$ is not a zero-divisor in a polynomial ring), so that the left hand side simplifies to $x^{k+1} - y^{k+1}$. Rewrite this using the binomial formula for $y^{k+1} = left(left(y-xright) + xright)^{k+1}$.
– darij grinberg
Nov 20 '18 at 6:22
As to your induction... You want to simplify $left(sum_{j=0}^{k-1} dbinom{k}{j} b^{left(k-1right)-j} a^{(j)} right) b$ so that it looks more like $sum_{j=0}^{k} dbinom{k+1}{j} b^{k-j} a^{(j)}$. So you want to commute the $b$ past the $a^{(j)}$. Of course, it doesn't just commute, but you have $a^{(j)} b = a^{(j+1)} + b a^{(j)}$. So your sum splits into two, with one sum getting its index shifted. I think you can finish it from here.
– darij grinberg
Nov 20 '18 at 6:28
add a comment |
This is taken from Jacobson's Basic Algebra 2e, it's 2.1.5
If $a$ and $b$ are elements of a ring, define $a^{(0)} =a, a^{(1)} = [a,b] = ab-ba$ and $a^{(k)}=[a^{(k-1)},b]$ Prove the following formula: $$sum_{i=0}^k b^i a b^{k-i} = sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}$$
So, I want to use induction to prove this and have verified it for k=1 and k=2. I've worked on the left hand side and gotten $$sum_{i=0}^k b^i a b^{k-i} =(sum_{i=0}^{k-1} b^i a b^{(k-1)-i} )b + b^k a $$
The next part would be to make $$ sum_{j=0}^{k-1} {k choose j} b^{(k-1)-j}a^{(j)}$$ appear on the right hand side so that I can apply the inductive hypothesis. The only thing I can think of would be to use ${n+1 choose k}={n choose k } + {n choose k-1}$. Maybe I've made an error but I believe this gives $$sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}=b(sum_{j=0}^{k-1} {k choose j+1} b^{(k-1)-j}a^{(j)}) + sum_{j=0}^k {k choose j}b^{k-j}a^{(j)} + {k choose k+1}b^0 a^{(k)}$$
While the last term is $0$, because the extra $b$ appears on opposite sides of the first term, I can't easily equate them and cancel. So I think I'm barking up the wrong tree trying to manipulate the right hand side of the formula in this way.
My question is two fold: how to prove this identity, and what does this composition of the commutator $a^{(j)}$ represent? If it eventually hits 0 is that still some kind of measure for how near $a$ and $b$ are to commuting? If anybody has seen this identity before and it has some usefulness beyond the exercise of proving it, I would also love to hear that.
ring-theory noncommutative-algebra
This is taken from Jacobson's Basic Algebra 2e, it's 2.1.5
If $a$ and $b$ are elements of a ring, define $a^{(0)} =a, a^{(1)} = [a,b] = ab-ba$ and $a^{(k)}=[a^{(k-1)},b]$ Prove the following formula: $$sum_{i=0}^k b^i a b^{k-i} = sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}$$
So, I want to use induction to prove this and have verified it for k=1 and k=2. I've worked on the left hand side and gotten $$sum_{i=0}^k b^i a b^{k-i} =(sum_{i=0}^{k-1} b^i a b^{(k-1)-i} )b + b^k a $$
The next part would be to make $$ sum_{j=0}^{k-1} {k choose j} b^{(k-1)-j}a^{(j)}$$ appear on the right hand side so that I can apply the inductive hypothesis. The only thing I can think of would be to use ${n+1 choose k}={n choose k } + {n choose k-1}$. Maybe I've made an error but I believe this gives $$sum_{j=0}^k {k+1 choose j+1} b^{k-j}a^{(j)}=b(sum_{j=0}^{k-1} {k choose j+1} b^{(k-1)-j}a^{(j)}) + sum_{j=0}^k {k choose j}b^{k-j}a^{(j)} + {k choose k+1}b^0 a^{(k)}$$
While the last term is $0$, because the extra $b$ appears on opposite sides of the first term, I can't easily equate them and cancel. So I think I'm barking up the wrong tree trying to manipulate the right hand side of the formula in this way.
My question is two fold: how to prove this identity, and what does this composition of the commutator $a^{(j)}$ represent? If it eventually hits 0 is that still some kind of measure for how near $a$ and $b$ are to commuting? If anybody has seen this identity before and it has some usefulness beyond the exercise of proving it, I would also love to hear that.
ring-theory noncommutative-algebra
ring-theory noncommutative-algebra
asked Nov 20 '18 at 6:07
MKellerMKeller
455
455
I haven't properly thought about your approach yet, but here is the "standard" trick for this sort of identity: Let $A$ be the ring. Let $L : A to A$ be the map sending each $x$ to $bx$, and let $R : A to A$ be the map sending each $x$ to $xb$. Then, the operators $L$ and $R$ are $mathbb{Z}$-linear and commute. But the left hand side of your identity is $sumlimits_{i=0}^k L^i R^{k-i} a$, whereas the right hand side is $sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j a$. So it remains to ...
– darij grinberg
Nov 20 '18 at 6:19
... prove that $sumlimits_{i=0}^k L^i R^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j$. This should follow from binomial-style manipulations (treating $L$ and $R$ as two arbitrary commuting elements).
– darij grinberg
Nov 20 '18 at 6:19
Ah, yes, the identity $sumlimits_{i=0}^k x^i y^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} x^{k-j} left(y-xright)^j$ holds for two arbitrary commuting elements $x$ and $y$. To prove it, it suffices to do so when $x$ and $y$ are two commuting indeterminates in a polynomial ring. Multiply both sides by $x-y$ (this is allowed, since $x-y$ is not a zero-divisor in a polynomial ring), so that the left hand side simplifies to $x^{k+1} - y^{k+1}$. Rewrite this using the binomial formula for $y^{k+1} = left(left(y-xright) + xright)^{k+1}$.
– darij grinberg
Nov 20 '18 at 6:22
As to your induction... You want to simplify $left(sum_{j=0}^{k-1} dbinom{k}{j} b^{left(k-1right)-j} a^{(j)} right) b$ so that it looks more like $sum_{j=0}^{k} dbinom{k+1}{j} b^{k-j} a^{(j)}$. So you want to commute the $b$ past the $a^{(j)}$. Of course, it doesn't just commute, but you have $a^{(j)} b = a^{(j+1)} + b a^{(j)}$. So your sum splits into two, with one sum getting its index shifted. I think you can finish it from here.
– darij grinberg
Nov 20 '18 at 6:28
add a comment |
I haven't properly thought about your approach yet, but here is the "standard" trick for this sort of identity: Let $A$ be the ring. Let $L : A to A$ be the map sending each $x$ to $bx$, and let $R : A to A$ be the map sending each $x$ to $xb$. Then, the operators $L$ and $R$ are $mathbb{Z}$-linear and commute. But the left hand side of your identity is $sumlimits_{i=0}^k L^i R^{k-i} a$, whereas the right hand side is $sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j a$. So it remains to ...
– darij grinberg
Nov 20 '18 at 6:19
... prove that $sumlimits_{i=0}^k L^i R^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j$. This should follow from binomial-style manipulations (treating $L$ and $R$ as two arbitrary commuting elements).
– darij grinberg
Nov 20 '18 at 6:19
Ah, yes, the identity $sumlimits_{i=0}^k x^i y^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} x^{k-j} left(y-xright)^j$ holds for two arbitrary commuting elements $x$ and $y$. To prove it, it suffices to do so when $x$ and $y$ are two commuting indeterminates in a polynomial ring. Multiply both sides by $x-y$ (this is allowed, since $x-y$ is not a zero-divisor in a polynomial ring), so that the left hand side simplifies to $x^{k+1} - y^{k+1}$. Rewrite this using the binomial formula for $y^{k+1} = left(left(y-xright) + xright)^{k+1}$.
– darij grinberg
Nov 20 '18 at 6:22
As to your induction... You want to simplify $left(sum_{j=0}^{k-1} dbinom{k}{j} b^{left(k-1right)-j} a^{(j)} right) b$ so that it looks more like $sum_{j=0}^{k} dbinom{k+1}{j} b^{k-j} a^{(j)}$. So you want to commute the $b$ past the $a^{(j)}$. Of course, it doesn't just commute, but you have $a^{(j)} b = a^{(j+1)} + b a^{(j)}$. So your sum splits into two, with one sum getting its index shifted. I think you can finish it from here.
– darij grinberg
Nov 20 '18 at 6:28
I haven't properly thought about your approach yet, but here is the "standard" trick for this sort of identity: Let $A$ be the ring. Let $L : A to A$ be the map sending each $x$ to $bx$, and let $R : A to A$ be the map sending each $x$ to $xb$. Then, the operators $L$ and $R$ are $mathbb{Z}$-linear and commute. But the left hand side of your identity is $sumlimits_{i=0}^k L^i R^{k-i} a$, whereas the right hand side is $sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j a$. So it remains to ...
– darij grinberg
Nov 20 '18 at 6:19
I haven't properly thought about your approach yet, but here is the "standard" trick for this sort of identity: Let $A$ be the ring. Let $L : A to A$ be the map sending each $x$ to $bx$, and let $R : A to A$ be the map sending each $x$ to $xb$. Then, the operators $L$ and $R$ are $mathbb{Z}$-linear and commute. But the left hand side of your identity is $sumlimits_{i=0}^k L^i R^{k-i} a$, whereas the right hand side is $sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j a$. So it remains to ...
– darij grinberg
Nov 20 '18 at 6:19
... prove that $sumlimits_{i=0}^k L^i R^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j$. This should follow from binomial-style manipulations (treating $L$ and $R$ as two arbitrary commuting elements).
– darij grinberg
Nov 20 '18 at 6:19
... prove that $sumlimits_{i=0}^k L^i R^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j$. This should follow from binomial-style manipulations (treating $L$ and $R$ as two arbitrary commuting elements).
– darij grinberg
Nov 20 '18 at 6:19
Ah, yes, the identity $sumlimits_{i=0}^k x^i y^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} x^{k-j} left(y-xright)^j$ holds for two arbitrary commuting elements $x$ and $y$. To prove it, it suffices to do so when $x$ and $y$ are two commuting indeterminates in a polynomial ring. Multiply both sides by $x-y$ (this is allowed, since $x-y$ is not a zero-divisor in a polynomial ring), so that the left hand side simplifies to $x^{k+1} - y^{k+1}$. Rewrite this using the binomial formula for $y^{k+1} = left(left(y-xright) + xright)^{k+1}$.
– darij grinberg
Nov 20 '18 at 6:22
Ah, yes, the identity $sumlimits_{i=0}^k x^i y^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} x^{k-j} left(y-xright)^j$ holds for two arbitrary commuting elements $x$ and $y$. To prove it, it suffices to do so when $x$ and $y$ are two commuting indeterminates in a polynomial ring. Multiply both sides by $x-y$ (this is allowed, since $x-y$ is not a zero-divisor in a polynomial ring), so that the left hand side simplifies to $x^{k+1} - y^{k+1}$. Rewrite this using the binomial formula for $y^{k+1} = left(left(y-xright) + xright)^{k+1}$.
– darij grinberg
Nov 20 '18 at 6:22
As to your induction... You want to simplify $left(sum_{j=0}^{k-1} dbinom{k}{j} b^{left(k-1right)-j} a^{(j)} right) b$ so that it looks more like $sum_{j=0}^{k} dbinom{k+1}{j} b^{k-j} a^{(j)}$. So you want to commute the $b$ past the $a^{(j)}$. Of course, it doesn't just commute, but you have $a^{(j)} b = a^{(j+1)} + b a^{(j)}$. So your sum splits into two, with one sum getting its index shifted. I think you can finish it from here.
– darij grinberg
Nov 20 '18 at 6:28
As to your induction... You want to simplify $left(sum_{j=0}^{k-1} dbinom{k}{j} b^{left(k-1right)-j} a^{(j)} right) b$ so that it looks more like $sum_{j=0}^{k} dbinom{k+1}{j} b^{k-j} a^{(j)}$. So you want to commute the $b$ past the $a^{(j)}$. Of course, it doesn't just commute, but you have $a^{(j)} b = a^{(j+1)} + b a^{(j)}$. So your sum splits into two, with one sum getting its index shifted. I think you can finish it from here.
– darij grinberg
Nov 20 '18 at 6:28
add a comment |
1 Answer
1
active
oldest
votes
I outlined two solutions in the comments above; let me expand one of them (the
inductive one) into full detail in order to have this question answered. Be
warned: This is going to be a long computation with no twists or surprises.
Theorem 1. Let $a$ and $b$ be two elements of an (associative, unital,
noncommutative) ring $R$. For any $xin R$ and $yin R$, we define the
commutator $left[ x,yright] in R$ of $x$ and $y$ by $left[
x,yright] =xy-yx$. Define a sequence $left( a^{left( 0right)
},a^{left( 1right) },a^{left( 2right) },ldotsright) $ of elements
of $R$ recursively by setting
begin{align*}
a^{left( 0right) } & =aqquadtext{and}\
a^{left( kright) } & =left[ a^{left( k-1right) },bright]
qquadtext{for each }kgeq 1.
end{align*}
Then,
begin{equation}
sum_{i=0}^{k} b^i ab^{k-i}
= sum_{j=0}^{k}dbinom{k+1}{j+1}b^{k-j}a^{left( jright) }
label{darij1.eq.thm.1.claim}
tag{1}
end{equation}
for each nonnegative integer $k$.
Proof of Theorem 1. We shall prove eqref{darij1.eq.thm.1.claim} by
induction on $k$:
Induction base: Comparing
begin{equation}
sum_{i=0}^0 b^i ab^{0-i}=underbrace{b^0 }_{=1}aunderbrace{b^{0-0}
}_{=b^0 =1}=a
end{equation}
with
begin{equation}
sum_{j=0}^0 dbinom{0+1}{j+1}b^{0-j}a^{left( jright) }
=underbrace{dbinom{0+1}{0+1}}_{=1}underbrace{b^{0-0}}_{=b^0
=1}underbrace{a^{left( 0right) }}_{=a}=a,
end{equation}
we obtain $sumlimits_{i=0}^0 b^i ab^{0-i}=sumlimits_{j=0}^0 dbinom{0+1}{j+1}
b^{0-j}a^{left( jright) }$. In other words, eqref{darij1.eq.thm.1.claim}
holds for $k=0$. This completes the induction base.
Induction step: Let $K$ be a positive integer. Assume that
eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. We must prove that
eqref{darij1.eq.thm.1.claim} holds for $k=K$.
We have assumed that eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. In other
words,
begin{align}
sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i} & =sum_{j=0}^{K-1}
dbinom{left( K-1right) +1}{j+1}b^{left( K-1right) -j}a^{left(
jright) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left(
jright) }
label{darij1.pf.thm.1.2}
tag{2}
end{align}
(since $left( K-1right) +1=K$).
For every nonnegative integer $j$, we have
begin{align*}
a^{left( j+1right) } & =left[ a^{left( jright) },bright]
qquadleft( text{by the recursive definition of }left( a^{left(
0right) },a^{left( 1right) },a^{left( 2right) },ldotsright)
right) \
& =a^{left( jright) }b-ba^{left( jright) }
end{align*}
(by the definition of $left[ a^{left( jright) },bright] $) and thus
begin{equation}
a^{left( jright) }b=ba^{left( jright) }+a^{left( j+1right)
}.
label{darij1.pf.thm.1.3}
tag{3}
end{equation}
Now, we can split off the addend for $i=K$ from the sum $sum_{i=0}^{K}
b^i ab^{K-i}$. We thus obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{i=0}^{K-1}b^i aunderbrace{b^{K-i}
}_{substack{=b^{left( K-iright) -1}b\text{(since }K-igeq
1\text{(because }ileq K-1text{))}}}+b^{K}aunderbrace{b^{K-K}}_{=b^0
=1}=sum_{i=0}^{K-1}b^i ab^{left( K-iright) -1}b+b^{K}a.
end{equation}
In view of
begin{align*}
& sum_{i=0}^{K-1}b^i aunderbrace{b^{left( K-iright) -1}}
_{substack{=b^{left( K-1right) -i}\text{(since }left( K-iright)
-1=left( K-1right) -itext{)}}}b\
& =sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i}b=left( sum_{i=0}
^{K-1}b^i ab^{left( K-1right) -i}right) b=left( sum_{j=0}
^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left( jright) }right)
b\
& qquadleft(
begin{array}
[c]{c}
text{this follows by multiplying both sides of}\
text{the equality eqref{darij1.pf.thm.1.2} by }b
end{array}
right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}
underbrace{a^{left( jright) }b}_{substack{=ba^{left( jright)
}+a^{left( j+1right) }\text{(by eqref{darij1.pf.thm.1.3})}}}=sum
_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}left( ba^{left(
jright) }+a^{left( j+1right) }right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left( K-1right) -j}
b}_{substack{=b^{left( left( K-1right) -jright) +1}=b^{K-j}
\text{(since }left( left( K-1right) -jright) +1=K-jtext{)}
}}a^{left( jright) }+sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left(
K-1right) -j}}_{substack{=b^{K-left( j+1right) }\text{(since }left(
K-1right) -j=K-left( j+1right) text{)}}}a^{left( j+1right) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-left( j+1right)
}a^{left( j+1right) }}_{substack{=sum_{j=1}^{K}dbinom{K}{j}
b^{K-j}a^{left( jright) }\text{(here, we substituted }jtext{ for
}j+1text{ in the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) },
end{align*}
this rewrites as
begin{align}
& sum_{i=0}^{K}b^i ab^{K-i}nonumber\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}
a.
label{darij1.pf.thm.1.5}
tag{4}
end{align}
On the other hand, each nonnegative integer $j$ satisfies
begin{equation}
dbinom{K+1}{j+1}=dbinom{K}{j+1}+dbinom{K}{j}
label{darij1.pf.thm.1.7}
tag{5}
end{equation}
(by the recurrence relation of the binomial coefficients). Also, the
nonnegative integers $K$ and $K+1$ satisfy $K+1 > K$; thus,
begin{equation}
dbinom{K}{K+1}=0
label{darij1.pf.thm.1.8}
tag{6}
end{equation}
(because any two nonnegative integers $n$ and $k$ satisfying $k>n$ must
satisfy $dbinom{n}{k}=0$).
Now,
begin{align*}
& sum_{j=0}^{K}underbrace{dbinom{K+1}{j+1}}_{substack{=dbinom{K}
{j+1}+dbinom{K}{j}\text{(by eqref{darij1.pf.thm.1.7})}}}b^{K-j}a^{left(
jright) }\
& =sum_{j=0}^{K}left( dbinom{K}{j+1}+dbinom{K}{j}right) b^{K-j}
a^{left( jright) }\
& =underbrace{sum_{j=0}^{K}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright)
}+dbinom{K}{K+1}b^{K-K}a^{left( Kright) }\text{(here, we have split off
the addend for }j=Ktext{ from the sum)}}}\
& qquad+underbrace{sum_{j=0}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+dbinom{K}{0}b^{K-0}a^{left( 0right) }\text{(here, we have split off
the addend for }j=0text{ from the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{K+1}}_{substack{=0\text{(by
eqref{darij1.pf.thm.1.8})}}}b^{K-K}a^{left( Kright) }\
& qquad+sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{0}}_{=1}underbrace{b^{K-0}}_{=b^{K}}
underbrace{a^{left( 0right) }}_{=a}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}a.
end{align*}
Comparing this with eqref{darij1.pf.thm.1.5}, we obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{j=0}^{K}dbinom{K+1}{j+1}b^{K-j}a^{left(
jright) }.
end{equation}
In other words, eqref{darij1.eq.thm.1.claim} holds for $k=K$. This completes
the induction step. Thus, eqref{darij1.eq.thm.1.claim} is proven by
induction. Hence, Theorem 1 follows. $blacksquare$
Remark. Theorem 1 also holds if $R$ is a nonunital ring, provided that we interpret all the expressions appearing in eqref{darij1.eq.thm.1.claim} appropriately. (For example, a product of the form "$b^0 a$" has to be interpreted as $a$ even though its sub-expression "$b^0$" is not defined.) The proof we gave above still applies to this situation.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006004%2fidentity-with-repeatedly-taking-the-commutator-of-a-ring-element%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I outlined two solutions in the comments above; let me expand one of them (the
inductive one) into full detail in order to have this question answered. Be
warned: This is going to be a long computation with no twists or surprises.
Theorem 1. Let $a$ and $b$ be two elements of an (associative, unital,
noncommutative) ring $R$. For any $xin R$ and $yin R$, we define the
commutator $left[ x,yright] in R$ of $x$ and $y$ by $left[
x,yright] =xy-yx$. Define a sequence $left( a^{left( 0right)
},a^{left( 1right) },a^{left( 2right) },ldotsright) $ of elements
of $R$ recursively by setting
begin{align*}
a^{left( 0right) } & =aqquadtext{and}\
a^{left( kright) } & =left[ a^{left( k-1right) },bright]
qquadtext{for each }kgeq 1.
end{align*}
Then,
begin{equation}
sum_{i=0}^{k} b^i ab^{k-i}
= sum_{j=0}^{k}dbinom{k+1}{j+1}b^{k-j}a^{left( jright) }
label{darij1.eq.thm.1.claim}
tag{1}
end{equation}
for each nonnegative integer $k$.
Proof of Theorem 1. We shall prove eqref{darij1.eq.thm.1.claim} by
induction on $k$:
Induction base: Comparing
begin{equation}
sum_{i=0}^0 b^i ab^{0-i}=underbrace{b^0 }_{=1}aunderbrace{b^{0-0}
}_{=b^0 =1}=a
end{equation}
with
begin{equation}
sum_{j=0}^0 dbinom{0+1}{j+1}b^{0-j}a^{left( jright) }
=underbrace{dbinom{0+1}{0+1}}_{=1}underbrace{b^{0-0}}_{=b^0
=1}underbrace{a^{left( 0right) }}_{=a}=a,
end{equation}
we obtain $sumlimits_{i=0}^0 b^i ab^{0-i}=sumlimits_{j=0}^0 dbinom{0+1}{j+1}
b^{0-j}a^{left( jright) }$. In other words, eqref{darij1.eq.thm.1.claim}
holds for $k=0$. This completes the induction base.
Induction step: Let $K$ be a positive integer. Assume that
eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. We must prove that
eqref{darij1.eq.thm.1.claim} holds for $k=K$.
We have assumed that eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. In other
words,
begin{align}
sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i} & =sum_{j=0}^{K-1}
dbinom{left( K-1right) +1}{j+1}b^{left( K-1right) -j}a^{left(
jright) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left(
jright) }
label{darij1.pf.thm.1.2}
tag{2}
end{align}
(since $left( K-1right) +1=K$).
For every nonnegative integer $j$, we have
begin{align*}
a^{left( j+1right) } & =left[ a^{left( jright) },bright]
qquadleft( text{by the recursive definition of }left( a^{left(
0right) },a^{left( 1right) },a^{left( 2right) },ldotsright)
right) \
& =a^{left( jright) }b-ba^{left( jright) }
end{align*}
(by the definition of $left[ a^{left( jright) },bright] $) and thus
begin{equation}
a^{left( jright) }b=ba^{left( jright) }+a^{left( j+1right)
}.
label{darij1.pf.thm.1.3}
tag{3}
end{equation}
Now, we can split off the addend for $i=K$ from the sum $sum_{i=0}^{K}
b^i ab^{K-i}$. We thus obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{i=0}^{K-1}b^i aunderbrace{b^{K-i}
}_{substack{=b^{left( K-iright) -1}b\text{(since }K-igeq
1\text{(because }ileq K-1text{))}}}+b^{K}aunderbrace{b^{K-K}}_{=b^0
=1}=sum_{i=0}^{K-1}b^i ab^{left( K-iright) -1}b+b^{K}a.
end{equation}
In view of
begin{align*}
& sum_{i=0}^{K-1}b^i aunderbrace{b^{left( K-iright) -1}}
_{substack{=b^{left( K-1right) -i}\text{(since }left( K-iright)
-1=left( K-1right) -itext{)}}}b\
& =sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i}b=left( sum_{i=0}
^{K-1}b^i ab^{left( K-1right) -i}right) b=left( sum_{j=0}
^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left( jright) }right)
b\
& qquadleft(
begin{array}
[c]{c}
text{this follows by multiplying both sides of}\
text{the equality eqref{darij1.pf.thm.1.2} by }b
end{array}
right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}
underbrace{a^{left( jright) }b}_{substack{=ba^{left( jright)
}+a^{left( j+1right) }\text{(by eqref{darij1.pf.thm.1.3})}}}=sum
_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}left( ba^{left(
jright) }+a^{left( j+1right) }right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left( K-1right) -j}
b}_{substack{=b^{left( left( K-1right) -jright) +1}=b^{K-j}
\text{(since }left( left( K-1right) -jright) +1=K-jtext{)}
}}a^{left( jright) }+sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left(
K-1right) -j}}_{substack{=b^{K-left( j+1right) }\text{(since }left(
K-1right) -j=K-left( j+1right) text{)}}}a^{left( j+1right) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-left( j+1right)
}a^{left( j+1right) }}_{substack{=sum_{j=1}^{K}dbinom{K}{j}
b^{K-j}a^{left( jright) }\text{(here, we substituted }jtext{ for
}j+1text{ in the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) },
end{align*}
this rewrites as
begin{align}
& sum_{i=0}^{K}b^i ab^{K-i}nonumber\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}
a.
label{darij1.pf.thm.1.5}
tag{4}
end{align}
On the other hand, each nonnegative integer $j$ satisfies
begin{equation}
dbinom{K+1}{j+1}=dbinom{K}{j+1}+dbinom{K}{j}
label{darij1.pf.thm.1.7}
tag{5}
end{equation}
(by the recurrence relation of the binomial coefficients). Also, the
nonnegative integers $K$ and $K+1$ satisfy $K+1 > K$; thus,
begin{equation}
dbinom{K}{K+1}=0
label{darij1.pf.thm.1.8}
tag{6}
end{equation}
(because any two nonnegative integers $n$ and $k$ satisfying $k>n$ must
satisfy $dbinom{n}{k}=0$).
Now,
begin{align*}
& sum_{j=0}^{K}underbrace{dbinom{K+1}{j+1}}_{substack{=dbinom{K}
{j+1}+dbinom{K}{j}\text{(by eqref{darij1.pf.thm.1.7})}}}b^{K-j}a^{left(
jright) }\
& =sum_{j=0}^{K}left( dbinom{K}{j+1}+dbinom{K}{j}right) b^{K-j}
a^{left( jright) }\
& =underbrace{sum_{j=0}^{K}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright)
}+dbinom{K}{K+1}b^{K-K}a^{left( Kright) }\text{(here, we have split off
the addend for }j=Ktext{ from the sum)}}}\
& qquad+underbrace{sum_{j=0}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+dbinom{K}{0}b^{K-0}a^{left( 0right) }\text{(here, we have split off
the addend for }j=0text{ from the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{K+1}}_{substack{=0\text{(by
eqref{darij1.pf.thm.1.8})}}}b^{K-K}a^{left( Kright) }\
& qquad+sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{0}}_{=1}underbrace{b^{K-0}}_{=b^{K}}
underbrace{a^{left( 0right) }}_{=a}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}a.
end{align*}
Comparing this with eqref{darij1.pf.thm.1.5}, we obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{j=0}^{K}dbinom{K+1}{j+1}b^{K-j}a^{left(
jright) }.
end{equation}
In other words, eqref{darij1.eq.thm.1.claim} holds for $k=K$. This completes
the induction step. Thus, eqref{darij1.eq.thm.1.claim} is proven by
induction. Hence, Theorem 1 follows. $blacksquare$
Remark. Theorem 1 also holds if $R$ is a nonunital ring, provided that we interpret all the expressions appearing in eqref{darij1.eq.thm.1.claim} appropriately. (For example, a product of the form "$b^0 a$" has to be interpreted as $a$ even though its sub-expression "$b^0$" is not defined.) The proof we gave above still applies to this situation.
add a comment |
I outlined two solutions in the comments above; let me expand one of them (the
inductive one) into full detail in order to have this question answered. Be
warned: This is going to be a long computation with no twists or surprises.
Theorem 1. Let $a$ and $b$ be two elements of an (associative, unital,
noncommutative) ring $R$. For any $xin R$ and $yin R$, we define the
commutator $left[ x,yright] in R$ of $x$ and $y$ by $left[
x,yright] =xy-yx$. Define a sequence $left( a^{left( 0right)
},a^{left( 1right) },a^{left( 2right) },ldotsright) $ of elements
of $R$ recursively by setting
begin{align*}
a^{left( 0right) } & =aqquadtext{and}\
a^{left( kright) } & =left[ a^{left( k-1right) },bright]
qquadtext{for each }kgeq 1.
end{align*}
Then,
begin{equation}
sum_{i=0}^{k} b^i ab^{k-i}
= sum_{j=0}^{k}dbinom{k+1}{j+1}b^{k-j}a^{left( jright) }
label{darij1.eq.thm.1.claim}
tag{1}
end{equation}
for each nonnegative integer $k$.
Proof of Theorem 1. We shall prove eqref{darij1.eq.thm.1.claim} by
induction on $k$:
Induction base: Comparing
begin{equation}
sum_{i=0}^0 b^i ab^{0-i}=underbrace{b^0 }_{=1}aunderbrace{b^{0-0}
}_{=b^0 =1}=a
end{equation}
with
begin{equation}
sum_{j=0}^0 dbinom{0+1}{j+1}b^{0-j}a^{left( jright) }
=underbrace{dbinom{0+1}{0+1}}_{=1}underbrace{b^{0-0}}_{=b^0
=1}underbrace{a^{left( 0right) }}_{=a}=a,
end{equation}
we obtain $sumlimits_{i=0}^0 b^i ab^{0-i}=sumlimits_{j=0}^0 dbinom{0+1}{j+1}
b^{0-j}a^{left( jright) }$. In other words, eqref{darij1.eq.thm.1.claim}
holds for $k=0$. This completes the induction base.
Induction step: Let $K$ be a positive integer. Assume that
eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. We must prove that
eqref{darij1.eq.thm.1.claim} holds for $k=K$.
We have assumed that eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. In other
words,
begin{align}
sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i} & =sum_{j=0}^{K-1}
dbinom{left( K-1right) +1}{j+1}b^{left( K-1right) -j}a^{left(
jright) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left(
jright) }
label{darij1.pf.thm.1.2}
tag{2}
end{align}
(since $left( K-1right) +1=K$).
For every nonnegative integer $j$, we have
begin{align*}
a^{left( j+1right) } & =left[ a^{left( jright) },bright]
qquadleft( text{by the recursive definition of }left( a^{left(
0right) },a^{left( 1right) },a^{left( 2right) },ldotsright)
right) \
& =a^{left( jright) }b-ba^{left( jright) }
end{align*}
(by the definition of $left[ a^{left( jright) },bright] $) and thus
begin{equation}
a^{left( jright) }b=ba^{left( jright) }+a^{left( j+1right)
}.
label{darij1.pf.thm.1.3}
tag{3}
end{equation}
Now, we can split off the addend for $i=K$ from the sum $sum_{i=0}^{K}
b^i ab^{K-i}$. We thus obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{i=0}^{K-1}b^i aunderbrace{b^{K-i}
}_{substack{=b^{left( K-iright) -1}b\text{(since }K-igeq
1\text{(because }ileq K-1text{))}}}+b^{K}aunderbrace{b^{K-K}}_{=b^0
=1}=sum_{i=0}^{K-1}b^i ab^{left( K-iright) -1}b+b^{K}a.
end{equation}
In view of
begin{align*}
& sum_{i=0}^{K-1}b^i aunderbrace{b^{left( K-iright) -1}}
_{substack{=b^{left( K-1right) -i}\text{(since }left( K-iright)
-1=left( K-1right) -itext{)}}}b\
& =sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i}b=left( sum_{i=0}
^{K-1}b^i ab^{left( K-1right) -i}right) b=left( sum_{j=0}
^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left( jright) }right)
b\
& qquadleft(
begin{array}
[c]{c}
text{this follows by multiplying both sides of}\
text{the equality eqref{darij1.pf.thm.1.2} by }b
end{array}
right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}
underbrace{a^{left( jright) }b}_{substack{=ba^{left( jright)
}+a^{left( j+1right) }\text{(by eqref{darij1.pf.thm.1.3})}}}=sum
_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}left( ba^{left(
jright) }+a^{left( j+1right) }right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left( K-1right) -j}
b}_{substack{=b^{left( left( K-1right) -jright) +1}=b^{K-j}
\text{(since }left( left( K-1right) -jright) +1=K-jtext{)}
}}a^{left( jright) }+sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left(
K-1right) -j}}_{substack{=b^{K-left( j+1right) }\text{(since }left(
K-1right) -j=K-left( j+1right) text{)}}}a^{left( j+1right) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-left( j+1right)
}a^{left( j+1right) }}_{substack{=sum_{j=1}^{K}dbinom{K}{j}
b^{K-j}a^{left( jright) }\text{(here, we substituted }jtext{ for
}j+1text{ in the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) },
end{align*}
this rewrites as
begin{align}
& sum_{i=0}^{K}b^i ab^{K-i}nonumber\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}
a.
label{darij1.pf.thm.1.5}
tag{4}
end{align}
On the other hand, each nonnegative integer $j$ satisfies
begin{equation}
dbinom{K+1}{j+1}=dbinom{K}{j+1}+dbinom{K}{j}
label{darij1.pf.thm.1.7}
tag{5}
end{equation}
(by the recurrence relation of the binomial coefficients). Also, the
nonnegative integers $K$ and $K+1$ satisfy $K+1 > K$; thus,
begin{equation}
dbinom{K}{K+1}=0
label{darij1.pf.thm.1.8}
tag{6}
end{equation}
(because any two nonnegative integers $n$ and $k$ satisfying $k>n$ must
satisfy $dbinom{n}{k}=0$).
Now,
begin{align*}
& sum_{j=0}^{K}underbrace{dbinom{K+1}{j+1}}_{substack{=dbinom{K}
{j+1}+dbinom{K}{j}\text{(by eqref{darij1.pf.thm.1.7})}}}b^{K-j}a^{left(
jright) }\
& =sum_{j=0}^{K}left( dbinom{K}{j+1}+dbinom{K}{j}right) b^{K-j}
a^{left( jright) }\
& =underbrace{sum_{j=0}^{K}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright)
}+dbinom{K}{K+1}b^{K-K}a^{left( Kright) }\text{(here, we have split off
the addend for }j=Ktext{ from the sum)}}}\
& qquad+underbrace{sum_{j=0}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+dbinom{K}{0}b^{K-0}a^{left( 0right) }\text{(here, we have split off
the addend for }j=0text{ from the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{K+1}}_{substack{=0\text{(by
eqref{darij1.pf.thm.1.8})}}}b^{K-K}a^{left( Kright) }\
& qquad+sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{0}}_{=1}underbrace{b^{K-0}}_{=b^{K}}
underbrace{a^{left( 0right) }}_{=a}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}a.
end{align*}
Comparing this with eqref{darij1.pf.thm.1.5}, we obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{j=0}^{K}dbinom{K+1}{j+1}b^{K-j}a^{left(
jright) }.
end{equation}
In other words, eqref{darij1.eq.thm.1.claim} holds for $k=K$. This completes
the induction step. Thus, eqref{darij1.eq.thm.1.claim} is proven by
induction. Hence, Theorem 1 follows. $blacksquare$
Remark. Theorem 1 also holds if $R$ is a nonunital ring, provided that we interpret all the expressions appearing in eqref{darij1.eq.thm.1.claim} appropriately. (For example, a product of the form "$b^0 a$" has to be interpreted as $a$ even though its sub-expression "$b^0$" is not defined.) The proof we gave above still applies to this situation.
add a comment |
I outlined two solutions in the comments above; let me expand one of them (the
inductive one) into full detail in order to have this question answered. Be
warned: This is going to be a long computation with no twists or surprises.
Theorem 1. Let $a$ and $b$ be two elements of an (associative, unital,
noncommutative) ring $R$. For any $xin R$ and $yin R$, we define the
commutator $left[ x,yright] in R$ of $x$ and $y$ by $left[
x,yright] =xy-yx$. Define a sequence $left( a^{left( 0right)
},a^{left( 1right) },a^{left( 2right) },ldotsright) $ of elements
of $R$ recursively by setting
begin{align*}
a^{left( 0right) } & =aqquadtext{and}\
a^{left( kright) } & =left[ a^{left( k-1right) },bright]
qquadtext{for each }kgeq 1.
end{align*}
Then,
begin{equation}
sum_{i=0}^{k} b^i ab^{k-i}
= sum_{j=0}^{k}dbinom{k+1}{j+1}b^{k-j}a^{left( jright) }
label{darij1.eq.thm.1.claim}
tag{1}
end{equation}
for each nonnegative integer $k$.
Proof of Theorem 1. We shall prove eqref{darij1.eq.thm.1.claim} by
induction on $k$:
Induction base: Comparing
begin{equation}
sum_{i=0}^0 b^i ab^{0-i}=underbrace{b^0 }_{=1}aunderbrace{b^{0-0}
}_{=b^0 =1}=a
end{equation}
with
begin{equation}
sum_{j=0}^0 dbinom{0+1}{j+1}b^{0-j}a^{left( jright) }
=underbrace{dbinom{0+1}{0+1}}_{=1}underbrace{b^{0-0}}_{=b^0
=1}underbrace{a^{left( 0right) }}_{=a}=a,
end{equation}
we obtain $sumlimits_{i=0}^0 b^i ab^{0-i}=sumlimits_{j=0}^0 dbinom{0+1}{j+1}
b^{0-j}a^{left( jright) }$. In other words, eqref{darij1.eq.thm.1.claim}
holds for $k=0$. This completes the induction base.
Induction step: Let $K$ be a positive integer. Assume that
eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. We must prove that
eqref{darij1.eq.thm.1.claim} holds for $k=K$.
We have assumed that eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. In other
words,
begin{align}
sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i} & =sum_{j=0}^{K-1}
dbinom{left( K-1right) +1}{j+1}b^{left( K-1right) -j}a^{left(
jright) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left(
jright) }
label{darij1.pf.thm.1.2}
tag{2}
end{align}
(since $left( K-1right) +1=K$).
For every nonnegative integer $j$, we have
begin{align*}
a^{left( j+1right) } & =left[ a^{left( jright) },bright]
qquadleft( text{by the recursive definition of }left( a^{left(
0right) },a^{left( 1right) },a^{left( 2right) },ldotsright)
right) \
& =a^{left( jright) }b-ba^{left( jright) }
end{align*}
(by the definition of $left[ a^{left( jright) },bright] $) and thus
begin{equation}
a^{left( jright) }b=ba^{left( jright) }+a^{left( j+1right)
}.
label{darij1.pf.thm.1.3}
tag{3}
end{equation}
Now, we can split off the addend for $i=K$ from the sum $sum_{i=0}^{K}
b^i ab^{K-i}$. We thus obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{i=0}^{K-1}b^i aunderbrace{b^{K-i}
}_{substack{=b^{left( K-iright) -1}b\text{(since }K-igeq
1\text{(because }ileq K-1text{))}}}+b^{K}aunderbrace{b^{K-K}}_{=b^0
=1}=sum_{i=0}^{K-1}b^i ab^{left( K-iright) -1}b+b^{K}a.
end{equation}
In view of
begin{align*}
& sum_{i=0}^{K-1}b^i aunderbrace{b^{left( K-iright) -1}}
_{substack{=b^{left( K-1right) -i}\text{(since }left( K-iright)
-1=left( K-1right) -itext{)}}}b\
& =sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i}b=left( sum_{i=0}
^{K-1}b^i ab^{left( K-1right) -i}right) b=left( sum_{j=0}
^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left( jright) }right)
b\
& qquadleft(
begin{array}
[c]{c}
text{this follows by multiplying both sides of}\
text{the equality eqref{darij1.pf.thm.1.2} by }b
end{array}
right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}
underbrace{a^{left( jright) }b}_{substack{=ba^{left( jright)
}+a^{left( j+1right) }\text{(by eqref{darij1.pf.thm.1.3})}}}=sum
_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}left( ba^{left(
jright) }+a^{left( j+1right) }right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left( K-1right) -j}
b}_{substack{=b^{left( left( K-1right) -jright) +1}=b^{K-j}
\text{(since }left( left( K-1right) -jright) +1=K-jtext{)}
}}a^{left( jright) }+sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left(
K-1right) -j}}_{substack{=b^{K-left( j+1right) }\text{(since }left(
K-1right) -j=K-left( j+1right) text{)}}}a^{left( j+1right) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-left( j+1right)
}a^{left( j+1right) }}_{substack{=sum_{j=1}^{K}dbinom{K}{j}
b^{K-j}a^{left( jright) }\text{(here, we substituted }jtext{ for
}j+1text{ in the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) },
end{align*}
this rewrites as
begin{align}
& sum_{i=0}^{K}b^i ab^{K-i}nonumber\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}
a.
label{darij1.pf.thm.1.5}
tag{4}
end{align}
On the other hand, each nonnegative integer $j$ satisfies
begin{equation}
dbinom{K+1}{j+1}=dbinom{K}{j+1}+dbinom{K}{j}
label{darij1.pf.thm.1.7}
tag{5}
end{equation}
(by the recurrence relation of the binomial coefficients). Also, the
nonnegative integers $K$ and $K+1$ satisfy $K+1 > K$; thus,
begin{equation}
dbinom{K}{K+1}=0
label{darij1.pf.thm.1.8}
tag{6}
end{equation}
(because any two nonnegative integers $n$ and $k$ satisfying $k>n$ must
satisfy $dbinom{n}{k}=0$).
Now,
begin{align*}
& sum_{j=0}^{K}underbrace{dbinom{K+1}{j+1}}_{substack{=dbinom{K}
{j+1}+dbinom{K}{j}\text{(by eqref{darij1.pf.thm.1.7})}}}b^{K-j}a^{left(
jright) }\
& =sum_{j=0}^{K}left( dbinom{K}{j+1}+dbinom{K}{j}right) b^{K-j}
a^{left( jright) }\
& =underbrace{sum_{j=0}^{K}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright)
}+dbinom{K}{K+1}b^{K-K}a^{left( Kright) }\text{(here, we have split off
the addend for }j=Ktext{ from the sum)}}}\
& qquad+underbrace{sum_{j=0}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+dbinom{K}{0}b^{K-0}a^{left( 0right) }\text{(here, we have split off
the addend for }j=0text{ from the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{K+1}}_{substack{=0\text{(by
eqref{darij1.pf.thm.1.8})}}}b^{K-K}a^{left( Kright) }\
& qquad+sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{0}}_{=1}underbrace{b^{K-0}}_{=b^{K}}
underbrace{a^{left( 0right) }}_{=a}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}a.
end{align*}
Comparing this with eqref{darij1.pf.thm.1.5}, we obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{j=0}^{K}dbinom{K+1}{j+1}b^{K-j}a^{left(
jright) }.
end{equation}
In other words, eqref{darij1.eq.thm.1.claim} holds for $k=K$. This completes
the induction step. Thus, eqref{darij1.eq.thm.1.claim} is proven by
induction. Hence, Theorem 1 follows. $blacksquare$
Remark. Theorem 1 also holds if $R$ is a nonunital ring, provided that we interpret all the expressions appearing in eqref{darij1.eq.thm.1.claim} appropriately. (For example, a product of the form "$b^0 a$" has to be interpreted as $a$ even though its sub-expression "$b^0$" is not defined.) The proof we gave above still applies to this situation.
I outlined two solutions in the comments above; let me expand one of them (the
inductive one) into full detail in order to have this question answered. Be
warned: This is going to be a long computation with no twists or surprises.
Theorem 1. Let $a$ and $b$ be two elements of an (associative, unital,
noncommutative) ring $R$. For any $xin R$ and $yin R$, we define the
commutator $left[ x,yright] in R$ of $x$ and $y$ by $left[
x,yright] =xy-yx$. Define a sequence $left( a^{left( 0right)
},a^{left( 1right) },a^{left( 2right) },ldotsright) $ of elements
of $R$ recursively by setting
begin{align*}
a^{left( 0right) } & =aqquadtext{and}\
a^{left( kright) } & =left[ a^{left( k-1right) },bright]
qquadtext{for each }kgeq 1.
end{align*}
Then,
begin{equation}
sum_{i=0}^{k} b^i ab^{k-i}
= sum_{j=0}^{k}dbinom{k+1}{j+1}b^{k-j}a^{left( jright) }
label{darij1.eq.thm.1.claim}
tag{1}
end{equation}
for each nonnegative integer $k$.
Proof of Theorem 1. We shall prove eqref{darij1.eq.thm.1.claim} by
induction on $k$:
Induction base: Comparing
begin{equation}
sum_{i=0}^0 b^i ab^{0-i}=underbrace{b^0 }_{=1}aunderbrace{b^{0-0}
}_{=b^0 =1}=a
end{equation}
with
begin{equation}
sum_{j=0}^0 dbinom{0+1}{j+1}b^{0-j}a^{left( jright) }
=underbrace{dbinom{0+1}{0+1}}_{=1}underbrace{b^{0-0}}_{=b^0
=1}underbrace{a^{left( 0right) }}_{=a}=a,
end{equation}
we obtain $sumlimits_{i=0}^0 b^i ab^{0-i}=sumlimits_{j=0}^0 dbinom{0+1}{j+1}
b^{0-j}a^{left( jright) }$. In other words, eqref{darij1.eq.thm.1.claim}
holds for $k=0$. This completes the induction base.
Induction step: Let $K$ be a positive integer. Assume that
eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. We must prove that
eqref{darij1.eq.thm.1.claim} holds for $k=K$.
We have assumed that eqref{darij1.eq.thm.1.claim} holds for $k=K-1$. In other
words,
begin{align}
sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i} & =sum_{j=0}^{K-1}
dbinom{left( K-1right) +1}{j+1}b^{left( K-1right) -j}a^{left(
jright) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left(
jright) }
label{darij1.pf.thm.1.2}
tag{2}
end{align}
(since $left( K-1right) +1=K$).
For every nonnegative integer $j$, we have
begin{align*}
a^{left( j+1right) } & =left[ a^{left( jright) },bright]
qquadleft( text{by the recursive definition of }left( a^{left(
0right) },a^{left( 1right) },a^{left( 2right) },ldotsright)
right) \
& =a^{left( jright) }b-ba^{left( jright) }
end{align*}
(by the definition of $left[ a^{left( jright) },bright] $) and thus
begin{equation}
a^{left( jright) }b=ba^{left( jright) }+a^{left( j+1right)
}.
label{darij1.pf.thm.1.3}
tag{3}
end{equation}
Now, we can split off the addend for $i=K$ from the sum $sum_{i=0}^{K}
b^i ab^{K-i}$. We thus obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{i=0}^{K-1}b^i aunderbrace{b^{K-i}
}_{substack{=b^{left( K-iright) -1}b\text{(since }K-igeq
1\text{(because }ileq K-1text{))}}}+b^{K}aunderbrace{b^{K-K}}_{=b^0
=1}=sum_{i=0}^{K-1}b^i ab^{left( K-iright) -1}b+b^{K}a.
end{equation}
In view of
begin{align*}
& sum_{i=0}^{K-1}b^i aunderbrace{b^{left( K-iright) -1}}
_{substack{=b^{left( K-1right) -i}\text{(since }left( K-iright)
-1=left( K-1right) -itext{)}}}b\
& =sum_{i=0}^{K-1}b^i ab^{left( K-1right) -i}b=left( sum_{i=0}
^{K-1}b^i ab^{left( K-1right) -i}right) b=left( sum_{j=0}
^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}a^{left( jright) }right)
b\
& qquadleft(
begin{array}
[c]{c}
text{this follows by multiplying both sides of}\
text{the equality eqref{darij1.pf.thm.1.2} by }b
end{array}
right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}
underbrace{a^{left( jright) }b}_{substack{=ba^{left( jright)
}+a^{left( j+1right) }\text{(by eqref{darij1.pf.thm.1.3})}}}=sum
_{j=0}^{K-1}dbinom{K}{j+1}b^{left( K-1right) -j}left( ba^{left(
jright) }+a^{left( j+1right) }right) \
& =sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left( K-1right) -j}
b}_{substack{=b^{left( left( K-1right) -jright) +1}=b^{K-j}
\text{(since }left( left( K-1right) -jright) +1=K-jtext{)}
}}a^{left( jright) }+sum_{j=0}^{K-1}dbinom{K}{j+1}underbrace{b^{left(
K-1right) -j}}_{substack{=b^{K-left( j+1right) }\text{(since }left(
K-1right) -j=K-left( j+1right) text{)}}}a^{left( j+1right) }\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-left( j+1right)
}a^{left( j+1right) }}_{substack{=sum_{j=1}^{K}dbinom{K}{j}
b^{K-j}a^{left( jright) }\text{(here, we substituted }jtext{ for
}j+1text{ in the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) },
end{align*}
this rewrites as
begin{align}
& sum_{i=0}^{K}b^i ab^{K-i}nonumber\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}
a.
label{darij1.pf.thm.1.5}
tag{4}
end{align}
On the other hand, each nonnegative integer $j$ satisfies
begin{equation}
dbinom{K+1}{j+1}=dbinom{K}{j+1}+dbinom{K}{j}
label{darij1.pf.thm.1.7}
tag{5}
end{equation}
(by the recurrence relation of the binomial coefficients). Also, the
nonnegative integers $K$ and $K+1$ satisfy $K+1 > K$; thus,
begin{equation}
dbinom{K}{K+1}=0
label{darij1.pf.thm.1.8}
tag{6}
end{equation}
(because any two nonnegative integers $n$ and $k$ satisfying $k>n$ must
satisfy $dbinom{n}{k}=0$).
Now,
begin{align*}
& sum_{j=0}^{K}underbrace{dbinom{K+1}{j+1}}_{substack{=dbinom{K}
{j+1}+dbinom{K}{j}\text{(by eqref{darij1.pf.thm.1.7})}}}b^{K-j}a^{left(
jright) }\
& =sum_{j=0}^{K}left( dbinom{K}{j+1}+dbinom{K}{j}right) b^{K-j}
a^{left( jright) }\
& =underbrace{sum_{j=0}^{K}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright)
}+dbinom{K}{K+1}b^{K-K}a^{left( Kright) }\text{(here, we have split off
the addend for }j=Ktext{ from the sum)}}}\
& qquad+underbrace{sum_{j=0}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
}_{substack{=sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+dbinom{K}{0}b^{K-0}a^{left( 0right) }\text{(here, we have split off
the addend for }j=0text{ from the sum)}}}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{K+1}}_{substack{=0\text{(by
eqref{darij1.pf.thm.1.8})}}}b^{K-K}a^{left( Kright) }\
& qquad+sum_{j=1}^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }
+underbrace{dbinom{K}{0}}_{=1}underbrace{b^{K-0}}_{=b^{K}}
underbrace{a^{left( 0right) }}_{=a}\
& =sum_{j=0}^{K-1}dbinom{K}{j+1}b^{K-j}a^{left( jright) }+sum_{j=1}
^{K}dbinom{K}{j}b^{K-j}a^{left( jright) }+b^{K}a.
end{align*}
Comparing this with eqref{darij1.pf.thm.1.5}, we obtain
begin{equation}
sum_{i=0}^{K}b^i ab^{K-i}=sum_{j=0}^{K}dbinom{K+1}{j+1}b^{K-j}a^{left(
jright) }.
end{equation}
In other words, eqref{darij1.eq.thm.1.claim} holds for $k=K$. This completes
the induction step. Thus, eqref{darij1.eq.thm.1.claim} is proven by
induction. Hence, Theorem 1 follows. $blacksquare$
Remark. Theorem 1 also holds if $R$ is a nonunital ring, provided that we interpret all the expressions appearing in eqref{darij1.eq.thm.1.claim} appropriately. (For example, a product of the form "$b^0 a$" has to be interpreted as $a$ even though its sub-expression "$b^0$" is not defined.) The proof we gave above still applies to this situation.
edited Jan 4 at 20:10
answered Nov 26 '18 at 3:00
darij grinbergdarij grinberg
10.4k33062
10.4k33062
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006004%2fidentity-with-repeatedly-taking-the-commutator-of-a-ring-element%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I haven't properly thought about your approach yet, but here is the "standard" trick for this sort of identity: Let $A$ be the ring. Let $L : A to A$ be the map sending each $x$ to $bx$, and let $R : A to A$ be the map sending each $x$ to $xb$. Then, the operators $L$ and $R$ are $mathbb{Z}$-linear and commute. But the left hand side of your identity is $sumlimits_{i=0}^k L^i R^{k-i} a$, whereas the right hand side is $sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j a$. So it remains to ...
– darij grinberg
Nov 20 '18 at 6:19
... prove that $sumlimits_{i=0}^k L^i R^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} L^{k-j} left(R-Lright)^j$. This should follow from binomial-style manipulations (treating $L$ and $R$ as two arbitrary commuting elements).
– darij grinberg
Nov 20 '18 at 6:19
Ah, yes, the identity $sumlimits_{i=0}^k x^i y^{k-i} = sumlimits_{j=0}^k dbinom{k+1}{j+1} x^{k-j} left(y-xright)^j$ holds for two arbitrary commuting elements $x$ and $y$. To prove it, it suffices to do so when $x$ and $y$ are two commuting indeterminates in a polynomial ring. Multiply both sides by $x-y$ (this is allowed, since $x-y$ is not a zero-divisor in a polynomial ring), so that the left hand side simplifies to $x^{k+1} - y^{k+1}$. Rewrite this using the binomial formula for $y^{k+1} = left(left(y-xright) + xright)^{k+1}$.
– darij grinberg
Nov 20 '18 at 6:22
As to your induction... You want to simplify $left(sum_{j=0}^{k-1} dbinom{k}{j} b^{left(k-1right)-j} a^{(j)} right) b$ so that it looks more like $sum_{j=0}^{k} dbinom{k+1}{j} b^{k-j} a^{(j)}$. So you want to commute the $b$ past the $a^{(j)}$. Of course, it doesn't just commute, but you have $a^{(j)} b = a^{(j+1)} + b a^{(j)}$. So your sum splits into two, with one sum getting its index shifted. I think you can finish it from here.
– darij grinberg
Nov 20 '18 at 6:28