A closed form for sum of binomial coefficients
$begingroup$
What is a closed form of the sum:
$$binom{n}{0}+binom{n-1}{1}+binom{n-2}{2}+binom{n-3}{3}+cdots$$
A combinatorial proof would also be much appreciated.
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
combinatorics summation binomial-coefficients
$endgroup$
add a comment |
$begingroup$
What is a closed form of the sum:
$$binom{n}{0}+binom{n-1}{1}+binom{n-2}{2}+binom{n-3}{3}+cdots$$
A combinatorial proof would also be much appreciated.
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
combinatorics summation binomial-coefficients
$endgroup$
$begingroup$
Try a few values of $n$; then make a guess. You can do it.
$endgroup$
– Marc van Leeuwen
Nov 1 '14 at 10:27
$begingroup$
Perhaps it would help Readers if you give the last term of the sum explicitly (is is finite, is it not?).
$endgroup$
– hardmath
Nov 2 '14 at 17:15
$begingroup$
@hardmath It is finite. By convention $binom{n}{k} = 0$ if $n<k$
$endgroup$
– Aditya
Nov 4 '14 at 8:50
1
$begingroup$
@Aditya However, $$ {n - k choose k}=left(,-1,right)^{k}{2k - n - 1 choose k} $$ when $n < k geq 0$.
$endgroup$
– Felix Marin
Nov 5 '14 at 20:36
$begingroup$
@FelixMarin I did not knew about that. I took $binom{n}{k}$ to mean simply as the number of ways to choose $k$ items out of $n$ distinct items.
$endgroup$
– Aditya
Nov 8 '14 at 9:22
add a comment |
$begingroup$
What is a closed form of the sum:
$$binom{n}{0}+binom{n-1}{1}+binom{n-2}{2}+binom{n-3}{3}+cdots$$
A combinatorial proof would also be much appreciated.
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
combinatorics summation binomial-coefficients
$endgroup$
What is a closed form of the sum:
$$binom{n}{0}+binom{n-1}{1}+binom{n-2}{2}+binom{n-3}{3}+cdots$$
A combinatorial proof would also be much appreciated.
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
combinatorics summation binomial-coefficients
combinatorics summation binomial-coefficients
asked Nov 1 '14 at 10:22
AdityaAditya
18116
18116
$begingroup$
Try a few values of $n$; then make a guess. You can do it.
$endgroup$
– Marc van Leeuwen
Nov 1 '14 at 10:27
$begingroup$
Perhaps it would help Readers if you give the last term of the sum explicitly (is is finite, is it not?).
$endgroup$
– hardmath
Nov 2 '14 at 17:15
$begingroup$
@hardmath It is finite. By convention $binom{n}{k} = 0$ if $n<k$
$endgroup$
– Aditya
Nov 4 '14 at 8:50
1
$begingroup$
@Aditya However, $$ {n - k choose k}=left(,-1,right)^{k}{2k - n - 1 choose k} $$ when $n < k geq 0$.
$endgroup$
– Felix Marin
Nov 5 '14 at 20:36
$begingroup$
@FelixMarin I did not knew about that. I took $binom{n}{k}$ to mean simply as the number of ways to choose $k$ items out of $n$ distinct items.
$endgroup$
– Aditya
Nov 8 '14 at 9:22
add a comment |
$begingroup$
Try a few values of $n$; then make a guess. You can do it.
$endgroup$
– Marc van Leeuwen
Nov 1 '14 at 10:27
$begingroup$
Perhaps it would help Readers if you give the last term of the sum explicitly (is is finite, is it not?).
$endgroup$
– hardmath
Nov 2 '14 at 17:15
$begingroup$
@hardmath It is finite. By convention $binom{n}{k} = 0$ if $n<k$
$endgroup$
– Aditya
Nov 4 '14 at 8:50
1
$begingroup$
@Aditya However, $$ {n - k choose k}=left(,-1,right)^{k}{2k - n - 1 choose k} $$ when $n < k geq 0$.
$endgroup$
– Felix Marin
Nov 5 '14 at 20:36
$begingroup$
@FelixMarin I did not knew about that. I took $binom{n}{k}$ to mean simply as the number of ways to choose $k$ items out of $n$ distinct items.
$endgroup$
– Aditya
Nov 8 '14 at 9:22
$begingroup$
Try a few values of $n$; then make a guess. You can do it.
$endgroup$
– Marc van Leeuwen
Nov 1 '14 at 10:27
$begingroup$
Try a few values of $n$; then make a guess. You can do it.
$endgroup$
– Marc van Leeuwen
Nov 1 '14 at 10:27
$begingroup$
Perhaps it would help Readers if you give the last term of the sum explicitly (is is finite, is it not?).
$endgroup$
– hardmath
Nov 2 '14 at 17:15
$begingroup$
Perhaps it would help Readers if you give the last term of the sum explicitly (is is finite, is it not?).
$endgroup$
– hardmath
Nov 2 '14 at 17:15
$begingroup$
@hardmath It is finite. By convention $binom{n}{k} = 0$ if $n<k$
$endgroup$
– Aditya
Nov 4 '14 at 8:50
$begingroup$
@hardmath It is finite. By convention $binom{n}{k} = 0$ if $n<k$
$endgroup$
– Aditya
Nov 4 '14 at 8:50
1
1
$begingroup$
@Aditya However, $$ {n - k choose k}=left(,-1,right)^{k}{2k - n - 1 choose k} $$ when $n < k geq 0$.
$endgroup$
– Felix Marin
Nov 5 '14 at 20:36
$begingroup$
@Aditya However, $$ {n - k choose k}=left(,-1,right)^{k}{2k - n - 1 choose k} $$ when $n < k geq 0$.
$endgroup$
– Felix Marin
Nov 5 '14 at 20:36
$begingroup$
@FelixMarin I did not knew about that. I took $binom{n}{k}$ to mean simply as the number of ways to choose $k$ items out of $n$ distinct items.
$endgroup$
– Aditya
Nov 8 '14 at 9:22
$begingroup$
@FelixMarin I did not knew about that. I took $binom{n}{k}$ to mean simply as the number of ways to choose $k$ items out of $n$ distinct items.
$endgroup$
– Aditya
Nov 8 '14 at 9:22
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint for a combinatorial proof. Count the number of sequences of $1$s and $2$s which add up to $n$.
Method 1. Explain why the number of such sequences which include exactly $k$ $2$s is $binom{n-k}{k}$.
Method 2. Show that if $a_n$ is the number of sequences then $a_n=a_{n-1}+a_{n-2}$.
Hint for a pictorial proof.
$$defr{color{red}{bullet}}defb{color{blue}{bullet}}defg{color{green}{bullet}}
defw{circ}defs{ }%
matrix{
wcr
wswcr
wswswcr
wswswsgcr
wswsgsbsrcr
wsgsbsrswswcr
gsbsrswswswswcr
bsrswswswswswswcr
rswswswswswswswswcr}$$
The terms in your expression are the red dots in Pascal's triangle. Each is the sum of the green and blue dots just above it. So the sum of all red dots is equal to the sum of all blue dots plus the sum of all green dots.
See if you can fill in the details. Good luck!
$endgroup$
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
add a comment |
$begingroup$
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
A general approach: consider $c_n=sumlimits_{k=0}^na_{k,n-k}$ for some given family of coefficients $(a_{k,n})$ and assume that, for every fixed $n$, the polynomial $A_n(x)=sumlimits_{k=0}^na_{k,n}x^k$ is known. Then, $$sum_{n=0}^infty A_n(x)x^n=sum_{kgeqslant0,ngeqslant0}a_{k,n}x^{k+n}=sum_{n=0}^infty c_nx^n.$$ In particular, if the generating function on the LHS can be computed, one can hope to recover the value of every $c_n$.
Your case is when $a_{n,k}={nchoose k}$, then the approach outlined above works like a charm...
$endgroup$
add a comment |
$begingroup$
HINT:
The coefficient of $x^n$ in
$$(1+x)^n+x^2(1+x)^{n-1}+x^4(1+x)^{n-2}+cdots$$ which is a Geometric Series with common ratio $dfrac{x^2}{1+x}$ which can be safely set in $(-1,1)$ to utilize Infinite Sum formula
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
=sum_{k = 0}^{n} overbrace{oint_{verts{z} = 1}%
{pars{1 + z}^{k} over z^{n - k + 1}},{dd z over 2piic}}
^{ds{= color{#c00000}{k choose n - k}}}
\[5mm] = &
oint_{verts{z} = 1}{1 over z^{n + 1}}
sum_{k = 0}^{n}bracks{pars{1 + z}z}^{k}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}{1 over z^{n + 1}}
{bracks{pars{1 + z}z}^{n + 1} - 1 over pars{1 + z}z - 1}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}
{pars{1 + z}^{n + 1} over pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}
\[2mm] &
-oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}label{1}tag{1}
end{align}
where $ds{r_{mp} = {-1 mp root{5} over 2}}$ are the roots of
$ds{z^{2} + z - 1 = 0}$. $ds{r_{-} = -phi}$ and
$ds{r_{+} = phi - 1 = {1 over phi}}$.
$ds{phi equiv {1 + root{5} over 2}}$ is the Golden Ratio.
$$
mbox{Note that}quad
r_{-} < -1,,quad 0 < r_{+} < 1.,qquad r_{-}r_{+} = r_{-} + r_{+} = -1.quad
r_{+} - r_{-} = root{5}
$$
From expression eqref{1}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
\[5mm] = &
{pars{1 + r_{+}}^{n + 1} over r_{+} - r_{-}}
-{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{+}}},{dd z over 2piic}
\&+
{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}},{dd z over 2piic}
\[5mm]&={phi^{n + 1} over root{5}}
-{1 over root{5}}color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
\&-{1 over root{5}r_{-}}color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}label{2}tag{2}
end{align}
begin{align}&color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
=sum_{k = 0}^{infty}r_{+}^{k}oint_{verts{z} = 1}
{1 over z^{n + 2 + k}},{dd z over 2piic}=color{#00f}{0}label{3}tag{3}
end{align}
begin{align}&color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}
=sum_{k = 0}^{infty}{1 over r_{-}^{k}}oint_{verts{z} = 1}
{1 over z^{n + 1 - k}},{dd z over 2piic}={1 over r_{-}^{n}}
=color{#c00000}{{1 over pars{-phi}^{n}}}
label{4}tag{4}
end{align}
With eqref{2}, eqref{3} and eqref{4}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
={phi^{n + 1} over root{5}} - {1 over root{5}pars{-phi}},
{1 over pars{-phi}^{n}}
=color{#66f}{large{phi^{n + 1} + pars{-1}^{n}phi^{-n - 1} over root{5}}}
end{align}
which is the $ds{pars{n + 1}}$-Fibonacci Number.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1001040%2fa-closed-form-for-sum-of-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint for a combinatorial proof. Count the number of sequences of $1$s and $2$s which add up to $n$.
Method 1. Explain why the number of such sequences which include exactly $k$ $2$s is $binom{n-k}{k}$.
Method 2. Show that if $a_n$ is the number of sequences then $a_n=a_{n-1}+a_{n-2}$.
Hint for a pictorial proof.
$$defr{color{red}{bullet}}defb{color{blue}{bullet}}defg{color{green}{bullet}}
defw{circ}defs{ }%
matrix{
wcr
wswcr
wswswcr
wswswsgcr
wswsgsbsrcr
wsgsbsrswswcr
gsbsrswswswswcr
bsrswswswswswswcr
rswswswswswswswswcr}$$
The terms in your expression are the red dots in Pascal's triangle. Each is the sum of the green and blue dots just above it. So the sum of all red dots is equal to the sum of all blue dots plus the sum of all green dots.
See if you can fill in the details. Good luck!
$endgroup$
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
add a comment |
$begingroup$
Hint for a combinatorial proof. Count the number of sequences of $1$s and $2$s which add up to $n$.
Method 1. Explain why the number of such sequences which include exactly $k$ $2$s is $binom{n-k}{k}$.
Method 2. Show that if $a_n$ is the number of sequences then $a_n=a_{n-1}+a_{n-2}$.
Hint for a pictorial proof.
$$defr{color{red}{bullet}}defb{color{blue}{bullet}}defg{color{green}{bullet}}
defw{circ}defs{ }%
matrix{
wcr
wswcr
wswswcr
wswswsgcr
wswsgsbsrcr
wsgsbsrswswcr
gsbsrswswswswcr
bsrswswswswswswcr
rswswswswswswswswcr}$$
The terms in your expression are the red dots in Pascal's triangle. Each is the sum of the green and blue dots just above it. So the sum of all red dots is equal to the sum of all blue dots plus the sum of all green dots.
See if you can fill in the details. Good luck!
$endgroup$
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
add a comment |
$begingroup$
Hint for a combinatorial proof. Count the number of sequences of $1$s and $2$s which add up to $n$.
Method 1. Explain why the number of such sequences which include exactly $k$ $2$s is $binom{n-k}{k}$.
Method 2. Show that if $a_n$ is the number of sequences then $a_n=a_{n-1}+a_{n-2}$.
Hint for a pictorial proof.
$$defr{color{red}{bullet}}defb{color{blue}{bullet}}defg{color{green}{bullet}}
defw{circ}defs{ }%
matrix{
wcr
wswcr
wswswcr
wswswsgcr
wswsgsbsrcr
wsgsbsrswswcr
gsbsrswswswswcr
bsrswswswswswswcr
rswswswswswswswswcr}$$
The terms in your expression are the red dots in Pascal's triangle. Each is the sum of the green and blue dots just above it. So the sum of all red dots is equal to the sum of all blue dots plus the sum of all green dots.
See if you can fill in the details. Good luck!
$endgroup$
Hint for a combinatorial proof. Count the number of sequences of $1$s and $2$s which add up to $n$.
Method 1. Explain why the number of such sequences which include exactly $k$ $2$s is $binom{n-k}{k}$.
Method 2. Show that if $a_n$ is the number of sequences then $a_n=a_{n-1}+a_{n-2}$.
Hint for a pictorial proof.
$$defr{color{red}{bullet}}defb{color{blue}{bullet}}defg{color{green}{bullet}}
defw{circ}defs{ }%
matrix{
wcr
wswcr
wswswcr
wswswsgcr
wswsgsbsrcr
wsgsbsrswswcr
gsbsrswswswswcr
bsrswswswswswswcr
rswswswswswswswswcr}$$
The terms in your expression are the red dots in Pascal's triangle. Each is the sum of the green and blue dots just above it. So the sum of all red dots is equal to the sum of all blue dots plus the sum of all green dots.
See if you can fill in the details. Good luck!
edited Nov 1 '14 at 12:00
answered Nov 1 '14 at 10:48
DavidDavid
68.1k664126
68.1k664126
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
add a comment |
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
$begingroup$
Wow! Thanks :) Fibonacci numbers are beautiful!
$endgroup$
– Aditya
Nov 4 '14 at 8:49
add a comment |
$begingroup$
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
A general approach: consider $c_n=sumlimits_{k=0}^na_{k,n-k}$ for some given family of coefficients $(a_{k,n})$ and assume that, for every fixed $n$, the polynomial $A_n(x)=sumlimits_{k=0}^na_{k,n}x^k$ is known. Then, $$sum_{n=0}^infty A_n(x)x^n=sum_{kgeqslant0,ngeqslant0}a_{k,n}x^{k+n}=sum_{n=0}^infty c_nx^n.$$ In particular, if the generating function on the LHS can be computed, one can hope to recover the value of every $c_n$.
Your case is when $a_{n,k}={nchoose k}$, then the approach outlined above works like a charm...
$endgroup$
add a comment |
$begingroup$
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
A general approach: consider $c_n=sumlimits_{k=0}^na_{k,n-k}$ for some given family of coefficients $(a_{k,n})$ and assume that, for every fixed $n$, the polynomial $A_n(x)=sumlimits_{k=0}^na_{k,n}x^k$ is known. Then, $$sum_{n=0}^infty A_n(x)x^n=sum_{kgeqslant0,ngeqslant0}a_{k,n}x^{k+n}=sum_{n=0}^infty c_nx^n.$$ In particular, if the generating function on the LHS can be computed, one can hope to recover the value of every $c_n$.
Your case is when $a_{n,k}={nchoose k}$, then the approach outlined above works like a charm...
$endgroup$
add a comment |
$begingroup$
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
A general approach: consider $c_n=sumlimits_{k=0}^na_{k,n-k}$ for some given family of coefficients $(a_{k,n})$ and assume that, for every fixed $n$, the polynomial $A_n(x)=sumlimits_{k=0}^na_{k,n}x^k$ is known. Then, $$sum_{n=0}^infty A_n(x)x^n=sum_{kgeqslant0,ngeqslant0}a_{k,n}x^{k+n}=sum_{n=0}^infty c_nx^n.$$ In particular, if the generating function on the LHS can be computed, one can hope to recover the value of every $c_n$.
Your case is when $a_{n,k}={nchoose k}$, then the approach outlined above works like a charm...
$endgroup$
Any general techniques to solve such sums where the numerator is decreasing and denominator increasing?
A general approach: consider $c_n=sumlimits_{k=0}^na_{k,n-k}$ for some given family of coefficients $(a_{k,n})$ and assume that, for every fixed $n$, the polynomial $A_n(x)=sumlimits_{k=0}^na_{k,n}x^k$ is known. Then, $$sum_{n=0}^infty A_n(x)x^n=sum_{kgeqslant0,ngeqslant0}a_{k,n}x^{k+n}=sum_{n=0}^infty c_nx^n.$$ In particular, if the generating function on the LHS can be computed, one can hope to recover the value of every $c_n$.
Your case is when $a_{n,k}={nchoose k}$, then the approach outlined above works like a charm...
answered Nov 1 '14 at 10:37
DidDid
247k23222458
247k23222458
add a comment |
add a comment |
$begingroup$
HINT:
The coefficient of $x^n$ in
$$(1+x)^n+x^2(1+x)^{n-1}+x^4(1+x)^{n-2}+cdots$$ which is a Geometric Series with common ratio $dfrac{x^2}{1+x}$ which can be safely set in $(-1,1)$ to utilize Infinite Sum formula
$endgroup$
add a comment |
$begingroup$
HINT:
The coefficient of $x^n$ in
$$(1+x)^n+x^2(1+x)^{n-1}+x^4(1+x)^{n-2}+cdots$$ which is a Geometric Series with common ratio $dfrac{x^2}{1+x}$ which can be safely set in $(-1,1)$ to utilize Infinite Sum formula
$endgroup$
add a comment |
$begingroup$
HINT:
The coefficient of $x^n$ in
$$(1+x)^n+x^2(1+x)^{n-1}+x^4(1+x)^{n-2}+cdots$$ which is a Geometric Series with common ratio $dfrac{x^2}{1+x}$ which can be safely set in $(-1,1)$ to utilize Infinite Sum formula
$endgroup$
HINT:
The coefficient of $x^n$ in
$$(1+x)^n+x^2(1+x)^{n-1}+x^4(1+x)^{n-2}+cdots$$ which is a Geometric Series with common ratio $dfrac{x^2}{1+x}$ which can be safely set in $(-1,1)$ to utilize Infinite Sum formula
edited Nov 1 '14 at 10:56
answered Nov 1 '14 at 10:49
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
add a comment |
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
=sum_{k = 0}^{n} overbrace{oint_{verts{z} = 1}%
{pars{1 + z}^{k} over z^{n - k + 1}},{dd z over 2piic}}
^{ds{= color{#c00000}{k choose n - k}}}
\[5mm] = &
oint_{verts{z} = 1}{1 over z^{n + 1}}
sum_{k = 0}^{n}bracks{pars{1 + z}z}^{k}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}{1 over z^{n + 1}}
{bracks{pars{1 + z}z}^{n + 1} - 1 over pars{1 + z}z - 1}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}
{pars{1 + z}^{n + 1} over pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}
\[2mm] &
-oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}label{1}tag{1}
end{align}
where $ds{r_{mp} = {-1 mp root{5} over 2}}$ are the roots of
$ds{z^{2} + z - 1 = 0}$. $ds{r_{-} = -phi}$ and
$ds{r_{+} = phi - 1 = {1 over phi}}$.
$ds{phi equiv {1 + root{5} over 2}}$ is the Golden Ratio.
$$
mbox{Note that}quad
r_{-} < -1,,quad 0 < r_{+} < 1.,qquad r_{-}r_{+} = r_{-} + r_{+} = -1.quad
r_{+} - r_{-} = root{5}
$$
From expression eqref{1}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
\[5mm] = &
{pars{1 + r_{+}}^{n + 1} over r_{+} - r_{-}}
-{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{+}}},{dd z over 2piic}
\&+
{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}},{dd z over 2piic}
\[5mm]&={phi^{n + 1} over root{5}}
-{1 over root{5}}color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
\&-{1 over root{5}r_{-}}color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}label{2}tag{2}
end{align}
begin{align}&color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
=sum_{k = 0}^{infty}r_{+}^{k}oint_{verts{z} = 1}
{1 over z^{n + 2 + k}},{dd z over 2piic}=color{#00f}{0}label{3}tag{3}
end{align}
begin{align}&color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}
=sum_{k = 0}^{infty}{1 over r_{-}^{k}}oint_{verts{z} = 1}
{1 over z^{n + 1 - k}},{dd z over 2piic}={1 over r_{-}^{n}}
=color{#c00000}{{1 over pars{-phi}^{n}}}
label{4}tag{4}
end{align}
With eqref{2}, eqref{3} and eqref{4}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
={phi^{n + 1} over root{5}} - {1 over root{5}pars{-phi}},
{1 over pars{-phi}^{n}}
=color{#66f}{large{phi^{n + 1} + pars{-1}^{n}phi^{-n - 1} over root{5}}}
end{align}
which is the $ds{pars{n + 1}}$-Fibonacci Number.
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
=sum_{k = 0}^{n} overbrace{oint_{verts{z} = 1}%
{pars{1 + z}^{k} over z^{n - k + 1}},{dd z over 2piic}}
^{ds{= color{#c00000}{k choose n - k}}}
\[5mm] = &
oint_{verts{z} = 1}{1 over z^{n + 1}}
sum_{k = 0}^{n}bracks{pars{1 + z}z}^{k}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}{1 over z^{n + 1}}
{bracks{pars{1 + z}z}^{n + 1} - 1 over pars{1 + z}z - 1}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}
{pars{1 + z}^{n + 1} over pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}
\[2mm] &
-oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}label{1}tag{1}
end{align}
where $ds{r_{mp} = {-1 mp root{5} over 2}}$ are the roots of
$ds{z^{2} + z - 1 = 0}$. $ds{r_{-} = -phi}$ and
$ds{r_{+} = phi - 1 = {1 over phi}}$.
$ds{phi equiv {1 + root{5} over 2}}$ is the Golden Ratio.
$$
mbox{Note that}quad
r_{-} < -1,,quad 0 < r_{+} < 1.,qquad r_{-}r_{+} = r_{-} + r_{+} = -1.quad
r_{+} - r_{-} = root{5}
$$
From expression eqref{1}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
\[5mm] = &
{pars{1 + r_{+}}^{n + 1} over r_{+} - r_{-}}
-{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{+}}},{dd z over 2piic}
\&+
{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}},{dd z over 2piic}
\[5mm]&={phi^{n + 1} over root{5}}
-{1 over root{5}}color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
\&-{1 over root{5}r_{-}}color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}label{2}tag{2}
end{align}
begin{align}&color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
=sum_{k = 0}^{infty}r_{+}^{k}oint_{verts{z} = 1}
{1 over z^{n + 2 + k}},{dd z over 2piic}=color{#00f}{0}label{3}tag{3}
end{align}
begin{align}&color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}
=sum_{k = 0}^{infty}{1 over r_{-}^{k}}oint_{verts{z} = 1}
{1 over z^{n + 1 - k}},{dd z over 2piic}={1 over r_{-}^{n}}
=color{#c00000}{{1 over pars{-phi}^{n}}}
label{4}tag{4}
end{align}
With eqref{2}, eqref{3} and eqref{4}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
={phi^{n + 1} over root{5}} - {1 over root{5}pars{-phi}},
{1 over pars{-phi}^{n}}
=color{#66f}{large{phi^{n + 1} + pars{-1}^{n}phi^{-n - 1} over root{5}}}
end{align}
which is the $ds{pars{n + 1}}$-Fibonacci Number.
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
=sum_{k = 0}^{n} overbrace{oint_{verts{z} = 1}%
{pars{1 + z}^{k} over z^{n - k + 1}},{dd z over 2piic}}
^{ds{= color{#c00000}{k choose n - k}}}
\[5mm] = &
oint_{verts{z} = 1}{1 over z^{n + 1}}
sum_{k = 0}^{n}bracks{pars{1 + z}z}^{k}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}{1 over z^{n + 1}}
{bracks{pars{1 + z}z}^{n + 1} - 1 over pars{1 + z}z - 1}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}
{pars{1 + z}^{n + 1} over pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}
\[2mm] &
-oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}label{1}tag{1}
end{align}
where $ds{r_{mp} = {-1 mp root{5} over 2}}$ are the roots of
$ds{z^{2} + z - 1 = 0}$. $ds{r_{-} = -phi}$ and
$ds{r_{+} = phi - 1 = {1 over phi}}$.
$ds{phi equiv {1 + root{5} over 2}}$ is the Golden Ratio.
$$
mbox{Note that}quad
r_{-} < -1,,quad 0 < r_{+} < 1.,qquad r_{-}r_{+} = r_{-} + r_{+} = -1.quad
r_{+} - r_{-} = root{5}
$$
From expression eqref{1}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
\[5mm] = &
{pars{1 + r_{+}}^{n + 1} over r_{+} - r_{-}}
-{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{+}}},{dd z over 2piic}
\&+
{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}},{dd z over 2piic}
\[5mm]&={phi^{n + 1} over root{5}}
-{1 over root{5}}color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
\&-{1 over root{5}r_{-}}color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}label{2}tag{2}
end{align}
begin{align}&color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
=sum_{k = 0}^{infty}r_{+}^{k}oint_{verts{z} = 1}
{1 over z^{n + 2 + k}},{dd z over 2piic}=color{#00f}{0}label{3}tag{3}
end{align}
begin{align}&color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}
=sum_{k = 0}^{infty}{1 over r_{-}^{k}}oint_{verts{z} = 1}
{1 over z^{n + 1 - k}},{dd z over 2piic}={1 over r_{-}^{n}}
=color{#c00000}{{1 over pars{-phi}^{n}}}
label{4}tag{4}
end{align}
With eqref{2}, eqref{3} and eqref{4}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
={phi^{n + 1} over root{5}} - {1 over root{5}pars{-phi}},
{1 over pars{-phi}^{n}}
=color{#66f}{large{phi^{n + 1} + pars{-1}^{n}phi^{-n - 1} over root{5}}}
end{align}
which is the $ds{pars{n + 1}}$-Fibonacci Number.
$endgroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
=sum_{k = 0}^{n} overbrace{oint_{verts{z} = 1}%
{pars{1 + z}^{k} over z^{n - k + 1}},{dd z over 2piic}}
^{ds{= color{#c00000}{k choose n - k}}}
\[5mm] = &
oint_{verts{z} = 1}{1 over z^{n + 1}}
sum_{k = 0}^{n}bracks{pars{1 + z}z}^{k}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}{1 over z^{n + 1}}
{bracks{pars{1 + z}z}^{n + 1} - 1 over pars{1 + z}z - 1}
,{dd z over 2piic}
\[5mm]&=oint_{verts{z} = 1}
{pars{1 + z}^{n + 1} over pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}
\[2mm] &
-oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}pars{z - r_{+}}}
,{dd z over 2piic}label{1}tag{1}
end{align}
where $ds{r_{mp} = {-1 mp root{5} over 2}}$ are the roots of
$ds{z^{2} + z - 1 = 0}$. $ds{r_{-} = -phi}$ and
$ds{r_{+} = phi - 1 = {1 over phi}}$.
$ds{phi equiv {1 + root{5} over 2}}$ is the Golden Ratio.
$$
mbox{Note that}quad
r_{-} < -1,,quad 0 < r_{+} < 1.,qquad r_{-}r_{+} = r_{-} + r_{+} = -1.quad
r_{+} - r_{-} = root{5}
$$
From expression eqref{1}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
\[5mm] = &
{pars{1 + r_{+}}^{n + 1} over r_{+} - r_{-}}
-{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{+}}},{dd z over 2piic}
\&+
{1 over r_{+} - r_{-}}oint_{verts{z} = 1}
{1 over z^{n + 1}pars{z - r_{-}}},{dd z over 2piic}
\[5mm]&={phi^{n + 1} over root{5}}
-{1 over root{5}}color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
\&-{1 over root{5}r_{-}}color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}label{2}tag{2}
end{align}
begin{align}&color{#00f}{oint_{verts{z} = 1}
{1 over z^{n + 2}pars{1 - r_{+}/z}},{dd z over 2piic}}
=sum_{k = 0}^{infty}r_{+}^{k}oint_{verts{z} = 1}
{1 over z^{n + 2 + k}},{dd z over 2piic}=color{#00f}{0}label{3}tag{3}
end{align}
begin{align}&color{#c00000}{oint_{verts{z} = 1}
{1 over z^{n + 1}pars{1 - z/r_{-}}},{dd z over 2piic}}
=sum_{k = 0}^{infty}{1 over r_{-}^{k}}oint_{verts{z} = 1}
{1 over z^{n + 1 - k}},{dd z over 2piic}={1 over r_{-}^{n}}
=color{#c00000}{{1 over pars{-phi}^{n}}}
label{4}tag{4}
end{align}
With eqref{2}, eqref{3} and eqref{4}:
begin{align}&color{#66f}{largesum_{k = 0}^{n}{k choose n - k}}
={phi^{n + 1} over root{5}} - {1 over root{5}pars{-phi}},
{1 over pars{-phi}^{n}}
=color{#66f}{large{phi^{n + 1} + pars{-1}^{n}phi^{-n - 1} over root{5}}}
end{align}
which is the $ds{pars{n + 1}}$-Fibonacci Number.
edited Jan 8 at 19:42
answered Nov 6 '14 at 22:30
Felix MarinFelix Marin
67.4k7107141
67.4k7107141
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1001040%2fa-closed-form-for-sum-of-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try a few values of $n$; then make a guess. You can do it.
$endgroup$
– Marc van Leeuwen
Nov 1 '14 at 10:27
$begingroup$
Perhaps it would help Readers if you give the last term of the sum explicitly (is is finite, is it not?).
$endgroup$
– hardmath
Nov 2 '14 at 17:15
$begingroup$
@hardmath It is finite. By convention $binom{n}{k} = 0$ if $n<k$
$endgroup$
– Aditya
Nov 4 '14 at 8:50
1
$begingroup$
@Aditya However, $$ {n - k choose k}=left(,-1,right)^{k}{2k - n - 1 choose k} $$ when $n < k geq 0$.
$endgroup$
– Felix Marin
Nov 5 '14 at 20:36
$begingroup$
@FelixMarin I did not knew about that. I took $binom{n}{k}$ to mean simply as the number of ways to choose $k$ items out of $n$ distinct items.
$endgroup$
– Aditya
Nov 8 '14 at 9:22