Prove for all $d in mathbb N$ that $2int_{E^{d-1}}frac{1}{sqrt{1-|x|^2}}dlambda^{d-1}(x)=dlambda^{d}(E_{d})$
$begingroup$
Note: $E_{d}={y in mathbb R^{d}:|y|leq 1}$
Since it shows states for all $d in mathbb N$, I automatically assume induction:
to solve $C_{d}:=2int_{E^{d-1}}frac{1}{sqrt{1-|x|^2}}dlambda^{d-1}(x)=dlambda^{d}(E_{d})$
so let $d=2$
$C_{1}:=2int_{[-1,1]}frac{1}{sqrt{1-|x|^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)$ and $frac{1}{sqrt{1-x^2}}$ is lebesgue integrable because it is continuous a.e. on compact set $[-1,1]$ therefore Riemann = Lebesgue Integral (Is this correct?)
So,
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx$ and then using trig substitutions $x = sin{u}$ and $dx = cos{(u)} du$
So we get
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx=2int_{[-1,1]}1dx=2times2=4=dlambda^2([-1,1])$
How do I continue this in the case $d in mathbb N$?
I appreciate any corrections, ideas on how to continue
real-analysis integration measure-theory lebesgue-integral
$endgroup$
add a comment |
$begingroup$
Note: $E_{d}={y in mathbb R^{d}:|y|leq 1}$
Since it shows states for all $d in mathbb N$, I automatically assume induction:
to solve $C_{d}:=2int_{E^{d-1}}frac{1}{sqrt{1-|x|^2}}dlambda^{d-1}(x)=dlambda^{d}(E_{d})$
so let $d=2$
$C_{1}:=2int_{[-1,1]}frac{1}{sqrt{1-|x|^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)$ and $frac{1}{sqrt{1-x^2}}$ is lebesgue integrable because it is continuous a.e. on compact set $[-1,1]$ therefore Riemann = Lebesgue Integral (Is this correct?)
So,
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx$ and then using trig substitutions $x = sin{u}$ and $dx = cos{(u)} du$
So we get
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx=2int_{[-1,1]}1dx=2times2=4=dlambda^2([-1,1])$
How do I continue this in the case $d in mathbb N$?
I appreciate any corrections, ideas on how to continue
real-analysis integration measure-theory lebesgue-integral
$endgroup$
$begingroup$
Did you mean $2int_{E^{d-1}}frac1{sqrt{1-|x|^2}}dlambda^{d-1}(x)=lambda^{d}(E_d)$?
$endgroup$
– John_Wick
Jan 7 at 0:34
add a comment |
$begingroup$
Note: $E_{d}={y in mathbb R^{d}:|y|leq 1}$
Since it shows states for all $d in mathbb N$, I automatically assume induction:
to solve $C_{d}:=2int_{E^{d-1}}frac{1}{sqrt{1-|x|^2}}dlambda^{d-1}(x)=dlambda^{d}(E_{d})$
so let $d=2$
$C_{1}:=2int_{[-1,1]}frac{1}{sqrt{1-|x|^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)$ and $frac{1}{sqrt{1-x^2}}$ is lebesgue integrable because it is continuous a.e. on compact set $[-1,1]$ therefore Riemann = Lebesgue Integral (Is this correct?)
So,
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx$ and then using trig substitutions $x = sin{u}$ and $dx = cos{(u)} du$
So we get
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx=2int_{[-1,1]}1dx=2times2=4=dlambda^2([-1,1])$
How do I continue this in the case $d in mathbb N$?
I appreciate any corrections, ideas on how to continue
real-analysis integration measure-theory lebesgue-integral
$endgroup$
Note: $E_{d}={y in mathbb R^{d}:|y|leq 1}$
Since it shows states for all $d in mathbb N$, I automatically assume induction:
to solve $C_{d}:=2int_{E^{d-1}}frac{1}{sqrt{1-|x|^2}}dlambda^{d-1}(x)=dlambda^{d}(E_{d})$
so let $d=2$
$C_{1}:=2int_{[-1,1]}frac{1}{sqrt{1-|x|^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)$ and $frac{1}{sqrt{1-x^2}}$ is lebesgue integrable because it is continuous a.e. on compact set $[-1,1]$ therefore Riemann = Lebesgue Integral (Is this correct?)
So,
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dlambda(x)=2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx$ and then using trig substitutions $x = sin{u}$ and $dx = cos{(u)} du$
So we get
$2int_{[-1,1]}frac{1}{sqrt{1-x^2}}dx=2int_{[-1,1]}1dx=2times2=4=dlambda^2([-1,1])$
How do I continue this in the case $d in mathbb N$?
I appreciate any corrections, ideas on how to continue
real-analysis integration measure-theory lebesgue-integral
real-analysis integration measure-theory lebesgue-integral
asked Jan 6 at 22:51
SABOYSABOY
567311
567311
$begingroup$
Did you mean $2int_{E^{d-1}}frac1{sqrt{1-|x|^2}}dlambda^{d-1}(x)=lambda^{d}(E_d)$?
$endgroup$
– John_Wick
Jan 7 at 0:34
add a comment |
$begingroup$
Did you mean $2int_{E^{d-1}}frac1{sqrt{1-|x|^2}}dlambda^{d-1}(x)=lambda^{d}(E_d)$?
$endgroup$
– John_Wick
Jan 7 at 0:34
$begingroup$
Did you mean $2int_{E^{d-1}}frac1{sqrt{1-|x|^2}}dlambda^{d-1}(x)=lambda^{d}(E_d)$?
$endgroup$
– John_Wick
Jan 7 at 0:34
$begingroup$
Did you mean $2int_{E^{d-1}}frac1{sqrt{1-|x|^2}}dlambda^{d-1}(x)=lambda^{d}(E_d)$?
$endgroup$
– John_Wick
Jan 7 at 0:34
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064485%2fprove-for-all-d-in-mathbb-n-that-2-int-ed-1-frac1-sqrt1-x2d-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064485%2fprove-for-all-d-in-mathbb-n-that-2-int-ed-1-frac1-sqrt1-x2d-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Did you mean $2int_{E^{d-1}}frac1{sqrt{1-|x|^2}}dlambda^{d-1}(x)=lambda^{d}(E_d)$?
$endgroup$
– John_Wick
Jan 7 at 0:34