A Roman-technology clock run by slaves - how to make it accurate
In a land similar to the Roman Empire, slaves are used to drive machinery. Mostly this is a matter of getting them to pull carts or wind handles.
The Emperor wants a clock that is accurate to the minute, powered by slaves.
With the technology of Ancient Rome and unlimited slave-power, how can such a clock be accurately regulated?
Let us suppose that the clock has a face similar to a modern-day analog clock.
Notes
The clock cannot be regulated by referring to another clock. It must be self-regulating.
Water power, sand-timers, wound-springs etc. are not to be used directly to power the clock - just slave manual power. However an (unpowered?) mechanism will be need to regulate the machine.
technology ancient-history time-keeping
|
show 2 more comments
In a land similar to the Roman Empire, slaves are used to drive machinery. Mostly this is a matter of getting them to pull carts or wind handles.
The Emperor wants a clock that is accurate to the minute, powered by slaves.
With the technology of Ancient Rome and unlimited slave-power, how can such a clock be accurately regulated?
Let us suppose that the clock has a face similar to a modern-day analog clock.
Notes
The clock cannot be regulated by referring to another clock. It must be self-regulating.
Water power, sand-timers, wound-springs etc. are not to be used directly to power the clock - just slave manual power. However an (unpowered?) mechanism will be need to regulate the machine.
technology ancient-history time-keeping
9
The Romans had clocks. Water clocks, sand clocks, weight driven clocks, burning clocks. The power required by a clock movement is trivial -- you don't need a slave, you need a small mouse. What they didn't have was enough knowledge of physics to make an accurate clock. They did not know about isochronous oscillations. The question is about the wrong problem.
– AlexP
yesterday
1
If it was actually considered a clock and usable on cloudy days, I'd add an answer about training the slaves to stand in a Gnomon pattern (think cheerleaders) and make a sundial
– JGreenwell
yesterday
2
Dear downvoters: the question isn't about Rome per se, it's about a Rome-like (Romanesque!) fictional world. It does not matter what the real Romans knew or didn't know. The only issue here, for us, is how to get these other Romans to make their slave clock run regular.
– elemtilas
yesterday
1
If its just a show of wealth, why not have a real clock somewhere, and then just have the slaves move the hands of a giant 500m display clock, to match the time on the smaller real clock. Accurate time, and needless show of wealth and power achieved.
– Tyler S. Loeper
yesterday
2
Note that the Romans divided the day into 12 hours -- meaning the length of an hour varied from day to day.
– Abigail
yesterday
|
show 2 more comments
In a land similar to the Roman Empire, slaves are used to drive machinery. Mostly this is a matter of getting them to pull carts or wind handles.
The Emperor wants a clock that is accurate to the minute, powered by slaves.
With the technology of Ancient Rome and unlimited slave-power, how can such a clock be accurately regulated?
Let us suppose that the clock has a face similar to a modern-day analog clock.
Notes
The clock cannot be regulated by referring to another clock. It must be self-regulating.
Water power, sand-timers, wound-springs etc. are not to be used directly to power the clock - just slave manual power. However an (unpowered?) mechanism will be need to regulate the machine.
technology ancient-history time-keeping
In a land similar to the Roman Empire, slaves are used to drive machinery. Mostly this is a matter of getting them to pull carts or wind handles.
The Emperor wants a clock that is accurate to the minute, powered by slaves.
With the technology of Ancient Rome and unlimited slave-power, how can such a clock be accurately regulated?
Let us suppose that the clock has a face similar to a modern-day analog clock.
Notes
The clock cannot be regulated by referring to another clock. It must be self-regulating.
Water power, sand-timers, wound-springs etc. are not to be used directly to power the clock - just slave manual power. However an (unpowered?) mechanism will be need to regulate the machine.
technology ancient-history time-keeping
technology ancient-history time-keeping
edited yesterday
asked yesterday
chasly from UK
12.8k356114
12.8k356114
9
The Romans had clocks. Water clocks, sand clocks, weight driven clocks, burning clocks. The power required by a clock movement is trivial -- you don't need a slave, you need a small mouse. What they didn't have was enough knowledge of physics to make an accurate clock. They did not know about isochronous oscillations. The question is about the wrong problem.
– AlexP
yesterday
1
If it was actually considered a clock and usable on cloudy days, I'd add an answer about training the slaves to stand in a Gnomon pattern (think cheerleaders) and make a sundial
– JGreenwell
yesterday
2
Dear downvoters: the question isn't about Rome per se, it's about a Rome-like (Romanesque!) fictional world. It does not matter what the real Romans knew or didn't know. The only issue here, for us, is how to get these other Romans to make their slave clock run regular.
– elemtilas
yesterday
1
If its just a show of wealth, why not have a real clock somewhere, and then just have the slaves move the hands of a giant 500m display clock, to match the time on the smaller real clock. Accurate time, and needless show of wealth and power achieved.
– Tyler S. Loeper
yesterday
2
Note that the Romans divided the day into 12 hours -- meaning the length of an hour varied from day to day.
– Abigail
yesterday
|
show 2 more comments
9
The Romans had clocks. Water clocks, sand clocks, weight driven clocks, burning clocks. The power required by a clock movement is trivial -- you don't need a slave, you need a small mouse. What they didn't have was enough knowledge of physics to make an accurate clock. They did not know about isochronous oscillations. The question is about the wrong problem.
– AlexP
yesterday
1
If it was actually considered a clock and usable on cloudy days, I'd add an answer about training the slaves to stand in a Gnomon pattern (think cheerleaders) and make a sundial
– JGreenwell
yesterday
2
Dear downvoters: the question isn't about Rome per se, it's about a Rome-like (Romanesque!) fictional world. It does not matter what the real Romans knew or didn't know. The only issue here, for us, is how to get these other Romans to make their slave clock run regular.
– elemtilas
yesterday
1
If its just a show of wealth, why not have a real clock somewhere, and then just have the slaves move the hands of a giant 500m display clock, to match the time on the smaller real clock. Accurate time, and needless show of wealth and power achieved.
– Tyler S. Loeper
yesterday
2
Note that the Romans divided the day into 12 hours -- meaning the length of an hour varied from day to day.
– Abigail
yesterday
9
9
The Romans had clocks. Water clocks, sand clocks, weight driven clocks, burning clocks. The power required by a clock movement is trivial -- you don't need a slave, you need a small mouse. What they didn't have was enough knowledge of physics to make an accurate clock. They did not know about isochronous oscillations. The question is about the wrong problem.
– AlexP
yesterday
The Romans had clocks. Water clocks, sand clocks, weight driven clocks, burning clocks. The power required by a clock movement is trivial -- you don't need a slave, you need a small mouse. What they didn't have was enough knowledge of physics to make an accurate clock. They did not know about isochronous oscillations. The question is about the wrong problem.
– AlexP
yesterday
1
1
If it was actually considered a clock and usable on cloudy days, I'd add an answer about training the slaves to stand in a Gnomon pattern (think cheerleaders) and make a sundial
– JGreenwell
yesterday
If it was actually considered a clock and usable on cloudy days, I'd add an answer about training the slaves to stand in a Gnomon pattern (think cheerleaders) and make a sundial
– JGreenwell
yesterday
2
2
Dear downvoters: the question isn't about Rome per se, it's about a Rome-like (Romanesque!) fictional world. It does not matter what the real Romans knew or didn't know. The only issue here, for us, is how to get these other Romans to make their slave clock run regular.
– elemtilas
yesterday
Dear downvoters: the question isn't about Rome per se, it's about a Rome-like (Romanesque!) fictional world. It does not matter what the real Romans knew or didn't know. The only issue here, for us, is how to get these other Romans to make their slave clock run regular.
– elemtilas
yesterday
1
1
If its just a show of wealth, why not have a real clock somewhere, and then just have the slaves move the hands of a giant 500m display clock, to match the time on the smaller real clock. Accurate time, and needless show of wealth and power achieved.
– Tyler S. Loeper
yesterday
If its just a show of wealth, why not have a real clock somewhere, and then just have the slaves move the hands of a giant 500m display clock, to match the time on the smaller real clock. Accurate time, and needless show of wealth and power achieved.
– Tyler S. Loeper
yesterday
2
2
Note that the Romans divided the day into 12 hours -- meaning the length of an hour varied from day to day.
– Abigail
yesterday
Note that the Romans divided the day into 12 hours -- meaning the length of an hour varied from day to day.
– Abigail
yesterday
|
show 2 more comments
5 Answers
5
active
oldest
votes
One possibility would be this set-up, all components being available to your parallel world Roman Imperials:
Component I: is the temporal regulation mechanism. Deep within the works of the Horologon, is a water cistern that is kept full from municipal water supplies (the Aqueduct). Pipes bring water down to a valve that is set by the engineers to flow at a certain rate. The water itself is brought up into a marble statue of a water nymph and is ejected from her left nipple at a constant rate. The water so ejected squirts onto a small water wheel which thus rotates at a constant rate. Two of the water wheel's buckets have projections that strike a small brass chime held by a bronze satyr at the wheel's base.
Component II: is the slave regulating mechanism. This component consists of a slave, two wooden mallets and two bronze nakers (a kind of drum). The slave, taking his cues from the satyr's chime, beats out a lively rhythm on the nakers which will regulate the slaves that actually operate the horologon itself. The rhythms vary by the hour, and close attention paid by passersby will immediately tell them, just by listening, what the hour is, even if they don't look up at the horologon's clever display.
Component III: are the slave tableaus. This is all part of the magic of Romanesque time keeping: the day being divided into fifteen hours of the clock, based on the calculated number of chime beats on Midsummer's day, there are therefore fifteen tableaux visible on the horologon's portico. The figures in each tableau are dressed in characteristic fashion of a particular region of the Empire and the slaves in each tableau dance in a fashion characteristic of that region. Other slaves, the tempora magistri, or "conductors", beat time along with the nakers by tapping their feet and striking the floor of the portico with their batons. Baton strikes are carefully counted and choreographed with the rhythms of the nakers to occur every half minute, first one strike then a double-strike. Every minute, or every double-strike of the conductors' baton therefore denotes one minute. At this moment, the tableau advances slightly around the portico.
Component IIIJ: is the horologon's display. Resting upon a great toothed rondel of hard wood at the centre of the tableau is a similarly toothed rondel from which radiates fifteen long spars with red legionary shields at the end of each, upon which are painted large numbers: J, IJ, IIJ, IIIJ, etc. up to XV.
Component V: is the housing. Naturally, the Emperor wishes to help the people of the Eternal City tell time, else why build a public horologon at all? But more importantly, he wishes to make a grand and opulent public display of the whole matter. Sure, any Marcus Aurelius in the street can look up at the Sun and say, oh, it's a little after noon. But the Emperor wants to make sure that not only his own subjects, but also traders from distant lands and embassies from rival empires and visiting dignitaries alike are awed by the cunning engineering and obviously vast wealth of the Empire. To do this, the entire horologon is housed within a marble temple like building, perhaps on the end of one of the basilicas. The beauty of its painted statuary and mythological stonework is a feast for the eyes; and all eyes will be drawn to the huge arched skene, the stage where the tableaux play out.
Component VJ: is the general orchestration of the horologon. All well and good, but how does one actually tell time? Quite simply, if one is sufficiently literate, one can simply read the numbers on the dial. As the big XIJ moves across the stage, you know it's twelve o'clock. If you're clever and you notice the evenly spaced markings along the base of the stage, you'll see that each time the conductor double-strikes his baton, the cartouche moves from one marking to the next. And, again, if you're literate, you'll notice that these markings are labelled: prima, secunda, tertia, etc. The big numbers indicate hours of the clock, the small numbers indicate minutes.
But the wise observer will note the horologon does much more than count minutes and hours. Indeed, the wise Emperor has devised the tableaux in such a way that each set of costumes and each set of dances is constantly changed over the course of time. Every day, the timed syllable chanting of the slaves, with its calculated number of syllables per line & strophe, corresponding to the passage of minutes, changes -- one day, hymns to the Moon or the Stars or to Istar or Ares; every two weeks, the dances change slightly and every month the costumes change as well. Every three months, the over-arching theme changes. Thus, the observant student of the imperial horologon can tell you what day, what hour and minute and in what fortnight and season you are currently in, all by observing and listening to what the horlogon of Emperor Minimus is telling!
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
3
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
1
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
2
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
|
show 5 more comments
With a pendulum
The quirk being that neither the pendulum nor the need for accurate time keeping had been invented in the period you're asking for, but gearing was already in use, the basic physics of a pendulum regulator could follow well enough.
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
1
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
2
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
1
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
2
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
|
show 5 more comments
Have the slaves build a large wheel, with an even number of carts evenly spread around it and a clear mark on it.
Have the wheel installed with an horizontal axis, free of spinning.
Have the slaves cut a number of stones, all from the same mine, all with the same shape and weight.
Have the slaves carry the stones to the top of the wheel, where they will put one stone in each cart reaching the top.
Have the slaves take away the stone from the cart when it reaches the bottom and carry the stone to the top.
Define every round trip of the mark on the wheel your base time unit.
1
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
6
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
1
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
1
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
|
show 2 more comments
With the mention of the analogue face, I'm going to assume they have a decent grasp of gearing. From there you need to control the speed that the slaves are rotating, for that you can use a simplified centrifuge governor.
Attach an arrow to the flyweights and have them point to a sweetspot chart and you could maintain a somewhat accurate fixed rotation speed.
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
add a comment |
You build a release for polished, uniform stones on the top of a slope or fall, which is triggered by the stones hitting the ground.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "579"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f135487%2fa-roman-technology-clock-run-by-slaves-how-to-make-it-accurate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
One possibility would be this set-up, all components being available to your parallel world Roman Imperials:
Component I: is the temporal regulation mechanism. Deep within the works of the Horologon, is a water cistern that is kept full from municipal water supplies (the Aqueduct). Pipes bring water down to a valve that is set by the engineers to flow at a certain rate. The water itself is brought up into a marble statue of a water nymph and is ejected from her left nipple at a constant rate. The water so ejected squirts onto a small water wheel which thus rotates at a constant rate. Two of the water wheel's buckets have projections that strike a small brass chime held by a bronze satyr at the wheel's base.
Component II: is the slave regulating mechanism. This component consists of a slave, two wooden mallets and two bronze nakers (a kind of drum). The slave, taking his cues from the satyr's chime, beats out a lively rhythm on the nakers which will regulate the slaves that actually operate the horologon itself. The rhythms vary by the hour, and close attention paid by passersby will immediately tell them, just by listening, what the hour is, even if they don't look up at the horologon's clever display.
Component III: are the slave tableaus. This is all part of the magic of Romanesque time keeping: the day being divided into fifteen hours of the clock, based on the calculated number of chime beats on Midsummer's day, there are therefore fifteen tableaux visible on the horologon's portico. The figures in each tableau are dressed in characteristic fashion of a particular region of the Empire and the slaves in each tableau dance in a fashion characteristic of that region. Other slaves, the tempora magistri, or "conductors", beat time along with the nakers by tapping their feet and striking the floor of the portico with their batons. Baton strikes are carefully counted and choreographed with the rhythms of the nakers to occur every half minute, first one strike then a double-strike. Every minute, or every double-strike of the conductors' baton therefore denotes one minute. At this moment, the tableau advances slightly around the portico.
Component IIIJ: is the horologon's display. Resting upon a great toothed rondel of hard wood at the centre of the tableau is a similarly toothed rondel from which radiates fifteen long spars with red legionary shields at the end of each, upon which are painted large numbers: J, IJ, IIJ, IIIJ, etc. up to XV.
Component V: is the housing. Naturally, the Emperor wishes to help the people of the Eternal City tell time, else why build a public horologon at all? But more importantly, he wishes to make a grand and opulent public display of the whole matter. Sure, any Marcus Aurelius in the street can look up at the Sun and say, oh, it's a little after noon. But the Emperor wants to make sure that not only his own subjects, but also traders from distant lands and embassies from rival empires and visiting dignitaries alike are awed by the cunning engineering and obviously vast wealth of the Empire. To do this, the entire horologon is housed within a marble temple like building, perhaps on the end of one of the basilicas. The beauty of its painted statuary and mythological stonework is a feast for the eyes; and all eyes will be drawn to the huge arched skene, the stage where the tableaux play out.
Component VJ: is the general orchestration of the horologon. All well and good, but how does one actually tell time? Quite simply, if one is sufficiently literate, one can simply read the numbers on the dial. As the big XIJ moves across the stage, you know it's twelve o'clock. If you're clever and you notice the evenly spaced markings along the base of the stage, you'll see that each time the conductor double-strikes his baton, the cartouche moves from one marking to the next. And, again, if you're literate, you'll notice that these markings are labelled: prima, secunda, tertia, etc. The big numbers indicate hours of the clock, the small numbers indicate minutes.
But the wise observer will note the horologon does much more than count minutes and hours. Indeed, the wise Emperor has devised the tableaux in such a way that each set of costumes and each set of dances is constantly changed over the course of time. Every day, the timed syllable chanting of the slaves, with its calculated number of syllables per line & strophe, corresponding to the passage of minutes, changes -- one day, hymns to the Moon or the Stars or to Istar or Ares; every two weeks, the dances change slightly and every month the costumes change as well. Every three months, the over-arching theme changes. Thus, the observant student of the imperial horologon can tell you what day, what hour and minute and in what fortnight and season you are currently in, all by observing and listening to what the horlogon of Emperor Minimus is telling!
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
3
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
1
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
2
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
|
show 5 more comments
One possibility would be this set-up, all components being available to your parallel world Roman Imperials:
Component I: is the temporal regulation mechanism. Deep within the works of the Horologon, is a water cistern that is kept full from municipal water supplies (the Aqueduct). Pipes bring water down to a valve that is set by the engineers to flow at a certain rate. The water itself is brought up into a marble statue of a water nymph and is ejected from her left nipple at a constant rate. The water so ejected squirts onto a small water wheel which thus rotates at a constant rate. Two of the water wheel's buckets have projections that strike a small brass chime held by a bronze satyr at the wheel's base.
Component II: is the slave regulating mechanism. This component consists of a slave, two wooden mallets and two bronze nakers (a kind of drum). The slave, taking his cues from the satyr's chime, beats out a lively rhythm on the nakers which will regulate the slaves that actually operate the horologon itself. The rhythms vary by the hour, and close attention paid by passersby will immediately tell them, just by listening, what the hour is, even if they don't look up at the horologon's clever display.
Component III: are the slave tableaus. This is all part of the magic of Romanesque time keeping: the day being divided into fifteen hours of the clock, based on the calculated number of chime beats on Midsummer's day, there are therefore fifteen tableaux visible on the horologon's portico. The figures in each tableau are dressed in characteristic fashion of a particular region of the Empire and the slaves in each tableau dance in a fashion characteristic of that region. Other slaves, the tempora magistri, or "conductors", beat time along with the nakers by tapping their feet and striking the floor of the portico with their batons. Baton strikes are carefully counted and choreographed with the rhythms of the nakers to occur every half minute, first one strike then a double-strike. Every minute, or every double-strike of the conductors' baton therefore denotes one minute. At this moment, the tableau advances slightly around the portico.
Component IIIJ: is the horologon's display. Resting upon a great toothed rondel of hard wood at the centre of the tableau is a similarly toothed rondel from which radiates fifteen long spars with red legionary shields at the end of each, upon which are painted large numbers: J, IJ, IIJ, IIIJ, etc. up to XV.
Component V: is the housing. Naturally, the Emperor wishes to help the people of the Eternal City tell time, else why build a public horologon at all? But more importantly, he wishes to make a grand and opulent public display of the whole matter. Sure, any Marcus Aurelius in the street can look up at the Sun and say, oh, it's a little after noon. But the Emperor wants to make sure that not only his own subjects, but also traders from distant lands and embassies from rival empires and visiting dignitaries alike are awed by the cunning engineering and obviously vast wealth of the Empire. To do this, the entire horologon is housed within a marble temple like building, perhaps on the end of one of the basilicas. The beauty of its painted statuary and mythological stonework is a feast for the eyes; and all eyes will be drawn to the huge arched skene, the stage where the tableaux play out.
Component VJ: is the general orchestration of the horologon. All well and good, but how does one actually tell time? Quite simply, if one is sufficiently literate, one can simply read the numbers on the dial. As the big XIJ moves across the stage, you know it's twelve o'clock. If you're clever and you notice the evenly spaced markings along the base of the stage, you'll see that each time the conductor double-strikes his baton, the cartouche moves from one marking to the next. And, again, if you're literate, you'll notice that these markings are labelled: prima, secunda, tertia, etc. The big numbers indicate hours of the clock, the small numbers indicate minutes.
But the wise observer will note the horologon does much more than count minutes and hours. Indeed, the wise Emperor has devised the tableaux in such a way that each set of costumes and each set of dances is constantly changed over the course of time. Every day, the timed syllable chanting of the slaves, with its calculated number of syllables per line & strophe, corresponding to the passage of minutes, changes -- one day, hymns to the Moon or the Stars or to Istar or Ares; every two weeks, the dances change slightly and every month the costumes change as well. Every three months, the over-arching theme changes. Thus, the observant student of the imperial horologon can tell you what day, what hour and minute and in what fortnight and season you are currently in, all by observing and listening to what the horlogon of Emperor Minimus is telling!
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
3
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
1
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
2
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
|
show 5 more comments
One possibility would be this set-up, all components being available to your parallel world Roman Imperials:
Component I: is the temporal regulation mechanism. Deep within the works of the Horologon, is a water cistern that is kept full from municipal water supplies (the Aqueduct). Pipes bring water down to a valve that is set by the engineers to flow at a certain rate. The water itself is brought up into a marble statue of a water nymph and is ejected from her left nipple at a constant rate. The water so ejected squirts onto a small water wheel which thus rotates at a constant rate. Two of the water wheel's buckets have projections that strike a small brass chime held by a bronze satyr at the wheel's base.
Component II: is the slave regulating mechanism. This component consists of a slave, two wooden mallets and two bronze nakers (a kind of drum). The slave, taking his cues from the satyr's chime, beats out a lively rhythm on the nakers which will regulate the slaves that actually operate the horologon itself. The rhythms vary by the hour, and close attention paid by passersby will immediately tell them, just by listening, what the hour is, even if they don't look up at the horologon's clever display.
Component III: are the slave tableaus. This is all part of the magic of Romanesque time keeping: the day being divided into fifteen hours of the clock, based on the calculated number of chime beats on Midsummer's day, there are therefore fifteen tableaux visible on the horologon's portico. The figures in each tableau are dressed in characteristic fashion of a particular region of the Empire and the slaves in each tableau dance in a fashion characteristic of that region. Other slaves, the tempora magistri, or "conductors", beat time along with the nakers by tapping their feet and striking the floor of the portico with their batons. Baton strikes are carefully counted and choreographed with the rhythms of the nakers to occur every half minute, first one strike then a double-strike. Every minute, or every double-strike of the conductors' baton therefore denotes one minute. At this moment, the tableau advances slightly around the portico.
Component IIIJ: is the horologon's display. Resting upon a great toothed rondel of hard wood at the centre of the tableau is a similarly toothed rondel from which radiates fifteen long spars with red legionary shields at the end of each, upon which are painted large numbers: J, IJ, IIJ, IIIJ, etc. up to XV.
Component V: is the housing. Naturally, the Emperor wishes to help the people of the Eternal City tell time, else why build a public horologon at all? But more importantly, he wishes to make a grand and opulent public display of the whole matter. Sure, any Marcus Aurelius in the street can look up at the Sun and say, oh, it's a little after noon. But the Emperor wants to make sure that not only his own subjects, but also traders from distant lands and embassies from rival empires and visiting dignitaries alike are awed by the cunning engineering and obviously vast wealth of the Empire. To do this, the entire horologon is housed within a marble temple like building, perhaps on the end of one of the basilicas. The beauty of its painted statuary and mythological stonework is a feast for the eyes; and all eyes will be drawn to the huge arched skene, the stage where the tableaux play out.
Component VJ: is the general orchestration of the horologon. All well and good, but how does one actually tell time? Quite simply, if one is sufficiently literate, one can simply read the numbers on the dial. As the big XIJ moves across the stage, you know it's twelve o'clock. If you're clever and you notice the evenly spaced markings along the base of the stage, you'll see that each time the conductor double-strikes his baton, the cartouche moves from one marking to the next. And, again, if you're literate, you'll notice that these markings are labelled: prima, secunda, tertia, etc. The big numbers indicate hours of the clock, the small numbers indicate minutes.
But the wise observer will note the horologon does much more than count minutes and hours. Indeed, the wise Emperor has devised the tableaux in such a way that each set of costumes and each set of dances is constantly changed over the course of time. Every day, the timed syllable chanting of the slaves, with its calculated number of syllables per line & strophe, corresponding to the passage of minutes, changes -- one day, hymns to the Moon or the Stars or to Istar or Ares; every two weeks, the dances change slightly and every month the costumes change as well. Every three months, the over-arching theme changes. Thus, the observant student of the imperial horologon can tell you what day, what hour and minute and in what fortnight and season you are currently in, all by observing and listening to what the horlogon of Emperor Minimus is telling!
One possibility would be this set-up, all components being available to your parallel world Roman Imperials:
Component I: is the temporal regulation mechanism. Deep within the works of the Horologon, is a water cistern that is kept full from municipal water supplies (the Aqueduct). Pipes bring water down to a valve that is set by the engineers to flow at a certain rate. The water itself is brought up into a marble statue of a water nymph and is ejected from her left nipple at a constant rate. The water so ejected squirts onto a small water wheel which thus rotates at a constant rate. Two of the water wheel's buckets have projections that strike a small brass chime held by a bronze satyr at the wheel's base.
Component II: is the slave regulating mechanism. This component consists of a slave, two wooden mallets and two bronze nakers (a kind of drum). The slave, taking his cues from the satyr's chime, beats out a lively rhythm on the nakers which will regulate the slaves that actually operate the horologon itself. The rhythms vary by the hour, and close attention paid by passersby will immediately tell them, just by listening, what the hour is, even if they don't look up at the horologon's clever display.
Component III: are the slave tableaus. This is all part of the magic of Romanesque time keeping: the day being divided into fifteen hours of the clock, based on the calculated number of chime beats on Midsummer's day, there are therefore fifteen tableaux visible on the horologon's portico. The figures in each tableau are dressed in characteristic fashion of a particular region of the Empire and the slaves in each tableau dance in a fashion characteristic of that region. Other slaves, the tempora magistri, or "conductors", beat time along with the nakers by tapping their feet and striking the floor of the portico with their batons. Baton strikes are carefully counted and choreographed with the rhythms of the nakers to occur every half minute, first one strike then a double-strike. Every minute, or every double-strike of the conductors' baton therefore denotes one minute. At this moment, the tableau advances slightly around the portico.
Component IIIJ: is the horologon's display. Resting upon a great toothed rondel of hard wood at the centre of the tableau is a similarly toothed rondel from which radiates fifteen long spars with red legionary shields at the end of each, upon which are painted large numbers: J, IJ, IIJ, IIIJ, etc. up to XV.
Component V: is the housing. Naturally, the Emperor wishes to help the people of the Eternal City tell time, else why build a public horologon at all? But more importantly, he wishes to make a grand and opulent public display of the whole matter. Sure, any Marcus Aurelius in the street can look up at the Sun and say, oh, it's a little after noon. But the Emperor wants to make sure that not only his own subjects, but also traders from distant lands and embassies from rival empires and visiting dignitaries alike are awed by the cunning engineering and obviously vast wealth of the Empire. To do this, the entire horologon is housed within a marble temple like building, perhaps on the end of one of the basilicas. The beauty of its painted statuary and mythological stonework is a feast for the eyes; and all eyes will be drawn to the huge arched skene, the stage where the tableaux play out.
Component VJ: is the general orchestration of the horologon. All well and good, but how does one actually tell time? Quite simply, if one is sufficiently literate, one can simply read the numbers on the dial. As the big XIJ moves across the stage, you know it's twelve o'clock. If you're clever and you notice the evenly spaced markings along the base of the stage, you'll see that each time the conductor double-strikes his baton, the cartouche moves from one marking to the next. And, again, if you're literate, you'll notice that these markings are labelled: prima, secunda, tertia, etc. The big numbers indicate hours of the clock, the small numbers indicate minutes.
But the wise observer will note the horologon does much more than count minutes and hours. Indeed, the wise Emperor has devised the tableaux in such a way that each set of costumes and each set of dances is constantly changed over the course of time. Every day, the timed syllable chanting of the slaves, with its calculated number of syllables per line & strophe, corresponding to the passage of minutes, changes -- one day, hymns to the Moon or the Stars or to Istar or Ares; every two weeks, the dances change slightly and every month the costumes change as well. Every three months, the over-arching theme changes. Thus, the observant student of the imperial horologon can tell you what day, what hour and minute and in what fortnight and season you are currently in, all by observing and listening to what the horlogon of Emperor Minimus is telling!
edited yesterday
answered yesterday
elemtilas
11.3k22655
11.3k22655
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
3
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
1
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
2
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
|
show 5 more comments
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
3
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
1
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
2
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
This is how the Remans in my own world went about it, anyway!
– elemtilas
yesterday
3
3
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
When you remove the gilded lilly, what's left of this answer is remarkably simple and, IMHO, the best answser. The slaves keep a cistern filled with water. The sistern can be made of a central, deep column and a larger, wider bowl at the top so the pressure remains reasonably constant while the water level shifts up and down with human error. The result is a constant and predictable flow of water that can be used to drive gearing of any complexity known to the Romans and easily calibrated to any desired timekeeping condition. Boom, baby. Well done Elemtilas.
– JBH
yesterday
1
1
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
Thank you much, @JBH! I, of course, appreciate the gilded lily aspect of this answer. The "clock" proper is simply constant water flow and a chime to help the human mind keep track of the time factor with respect to water flow. But, hey, this is Rome! And wealthy Romans thrive on opulent displays of wealth and power! Plus, I needed something for all the slaves to occupy their time.
– elemtilas
yesterday
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
This is very impressive. The Emperor even now has his advisors consulting about this possibility.
– chasly from UK
17 hours ago
2
2
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
If your cistern has a overflow at the top you can precisely maintain the water column height, and therefore pressure without any complex regulators.
– Corbin Matheson
10 hours ago
|
show 5 more comments
With a pendulum
The quirk being that neither the pendulum nor the need for accurate time keeping had been invented in the period you're asking for, but gearing was already in use, the basic physics of a pendulum regulator could follow well enough.
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
1
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
2
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
1
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
2
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
|
show 5 more comments
With a pendulum
The quirk being that neither the pendulum nor the need for accurate time keeping had been invented in the period you're asking for, but gearing was already in use, the basic physics of a pendulum regulator could follow well enough.
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
1
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
2
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
1
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
2
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
|
show 5 more comments
With a pendulum
The quirk being that neither the pendulum nor the need for accurate time keeping had been invented in the period you're asking for, but gearing was already in use, the basic physics of a pendulum regulator could follow well enough.
With a pendulum
The quirk being that neither the pendulum nor the need for accurate time keeping had been invented in the period you're asking for, but gearing was already in use, the basic physics of a pendulum regulator could follow well enough.
edited yesterday
answered yesterday
Separatrix
77.7k31184306
77.7k31184306
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
1
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
2
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
1
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
2
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
|
show 5 more comments
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
1
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
2
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
1
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
2
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
I'm not sure how they make the pendulum swing regularly. Surely a slave would have to push it. That is subject to error. Do you have a reference that indicates how the Romans were using gearing - that sounds interesting.
– chasly from UK
yesterday
1
1
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
@chaslyfromUK, the source you're looking for for gears is the Antikythera mechanism this could be the work of a lone raving genius, but it shows the principle of gears was known in the period.
– Separatrix
yesterday
2
2
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
@chaslyfromUK: In 1602 Galileo discovered that the period of oscillation of a pendulum is almost independent of the amplitude of the oscillations, as long as the oscillations are small. You don't need to do anything for the pendulum to swing regularly -- it does that all by itself. The small power input is needed to compensate for energy loss due to friction in the mechanism. A large grandfather clock uses about 0.1 milliwatts of power. A huge tower clock uses about 100 milliwatts for the clock movement.
– AlexP
yesterday
1
1
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
Two pendulums (pendula?). When one needs to be pushed, it is later synchronized to the other. When the other needs to be pushed, the process is repeated.
– David Schwartz
yesterday
2
2
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
@Separatrix - I get you - of course the fictional emperor who wanted the accurate clock could have had his greatest philosophers research the idea and it would not be beyond the bounds of possibility that they could discover a pendulum ahead of (real-life) time...
– colmde
16 hours ago
|
show 5 more comments
Have the slaves build a large wheel, with an even number of carts evenly spread around it and a clear mark on it.
Have the wheel installed with an horizontal axis, free of spinning.
Have the slaves cut a number of stones, all from the same mine, all with the same shape and weight.
Have the slaves carry the stones to the top of the wheel, where they will put one stone in each cart reaching the top.
Have the slaves take away the stone from the cart when it reaches the bottom and carry the stone to the top.
Define every round trip of the mark on the wheel your base time unit.
1
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
6
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
1
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
1
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
|
show 2 more comments
Have the slaves build a large wheel, with an even number of carts evenly spread around it and a clear mark on it.
Have the wheel installed with an horizontal axis, free of spinning.
Have the slaves cut a number of stones, all from the same mine, all with the same shape and weight.
Have the slaves carry the stones to the top of the wheel, where they will put one stone in each cart reaching the top.
Have the slaves take away the stone from the cart when it reaches the bottom and carry the stone to the top.
Define every round trip of the mark on the wheel your base time unit.
1
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
6
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
1
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
1
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
|
show 2 more comments
Have the slaves build a large wheel, with an even number of carts evenly spread around it and a clear mark on it.
Have the wheel installed with an horizontal axis, free of spinning.
Have the slaves cut a number of stones, all from the same mine, all with the same shape and weight.
Have the slaves carry the stones to the top of the wheel, where they will put one stone in each cart reaching the top.
Have the slaves take away the stone from the cart when it reaches the bottom and carry the stone to the top.
Define every round trip of the mark on the wheel your base time unit.
Have the slaves build a large wheel, with an even number of carts evenly spread around it and a clear mark on it.
Have the wheel installed with an horizontal axis, free of spinning.
Have the slaves cut a number of stones, all from the same mine, all with the same shape and weight.
Have the slaves carry the stones to the top of the wheel, where they will put one stone in each cart reaching the top.
Have the slaves take away the stone from the cart when it reaches the bottom and carry the stone to the top.
Define every round trip of the mark on the wheel your base time unit.
answered yesterday
L.Dutch♦
77.4k25184375
77.4k25184375
1
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
6
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
1
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
1
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
|
show 2 more comments
1
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
6
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
1
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
1
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
1
1
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
That is interesting - I like it. How would you prevent slaves putting stones onto the wheel too soon or too late?
– chasly from UK
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
@chaslyfromUK, mechanical safety or slave supervisors equipped with whips
– L.Dutch♦
yesterday
6
6
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
I read it as "an even number of cats" which makes a good answer even better.
– user535733
yesterday
1
1
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
This machine works only against the friction in the wheel axis. After a day it will become faster or slower, depending on the wear.
– Karl
yesterday
1
1
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
A neat idea but doesn't seem like it would be very accuracte. The moment you switch slaves, their speed, carrying capacity, etc would change, as would there performance at different energy levels (fresh/tired/hungry/sleep deprived). But the real problem is the absurd limitations of the question.
– Tyler S. Loeper
yesterday
|
show 2 more comments
With the mention of the analogue face, I'm going to assume they have a decent grasp of gearing. From there you need to control the speed that the slaves are rotating, for that you can use a simplified centrifuge governor.
Attach an arrow to the flyweights and have them point to a sweetspot chart and you could maintain a somewhat accurate fixed rotation speed.
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
add a comment |
With the mention of the analogue face, I'm going to assume they have a decent grasp of gearing. From there you need to control the speed that the slaves are rotating, for that you can use a simplified centrifuge governor.
Attach an arrow to the flyweights and have them point to a sweetspot chart and you could maintain a somewhat accurate fixed rotation speed.
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
add a comment |
With the mention of the analogue face, I'm going to assume they have a decent grasp of gearing. From there you need to control the speed that the slaves are rotating, for that you can use a simplified centrifuge governor.
Attach an arrow to the flyweights and have them point to a sweetspot chart and you could maintain a somewhat accurate fixed rotation speed.
With the mention of the analogue face, I'm going to assume they have a decent grasp of gearing. From there you need to control the speed that the slaves are rotating, for that you can use a simplified centrifuge governor.
Attach an arrow to the flyweights and have them point to a sweetspot chart and you could maintain a somewhat accurate fixed rotation speed.
answered yesterday
Corbin Matheson
1112
1112
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
add a comment |
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
So, basically, replace flyballs d(sub-b) and h(sub-s) with equally weighted slaves...
– elemtilas
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
nah, rig it so if the slaves don't get the flyballs spinning fast enough, the flyballs his levers that cause whips to auto-lash the slaves pushing the main drive wheel.
– Corbin Matheson
yesterday
add a comment |
You build a release for polished, uniform stones on the top of a slope or fall, which is triggered by the stones hitting the ground.
add a comment |
You build a release for polished, uniform stones on the top of a slope or fall, which is triggered by the stones hitting the ground.
add a comment |
You build a release for polished, uniform stones on the top of a slope or fall, which is triggered by the stones hitting the ground.
You build a release for polished, uniform stones on the top of a slope or fall, which is triggered by the stones hitting the ground.
answered yesterday
Karl
2,637816
2,637816
add a comment |
add a comment |
Thanks for contributing an answer to Worldbuilding Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f135487%2fa-roman-technology-clock-run-by-slaves-how-to-make-it-accurate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
9
The Romans had clocks. Water clocks, sand clocks, weight driven clocks, burning clocks. The power required by a clock movement is trivial -- you don't need a slave, you need a small mouse. What they didn't have was enough knowledge of physics to make an accurate clock. They did not know about isochronous oscillations. The question is about the wrong problem.
– AlexP
yesterday
1
If it was actually considered a clock and usable on cloudy days, I'd add an answer about training the slaves to stand in a Gnomon pattern (think cheerleaders) and make a sundial
– JGreenwell
yesterday
2
Dear downvoters: the question isn't about Rome per se, it's about a Rome-like (Romanesque!) fictional world. It does not matter what the real Romans knew or didn't know. The only issue here, for us, is how to get these other Romans to make their slave clock run regular.
– elemtilas
yesterday
1
If its just a show of wealth, why not have a real clock somewhere, and then just have the slaves move the hands of a giant 500m display clock, to match the time on the smaller real clock. Accurate time, and needless show of wealth and power achieved.
– Tyler S. Loeper
yesterday
2
Note that the Romans divided the day into 12 hours -- meaning the length of an hour varied from day to day.
– Abigail
yesterday