Let X be the average of a sample of 16 independent normal random variables with mean 0 and variance 1....












1












$begingroup$


Let $overline{X}$ be the average of a sample of $16$ independent normal random variables with mean $0$ and variance $1$. Determine c such that
$P(| overline{X} | < c) = .5$



I am having a lot of trouble with this question. I know it is related to chi-square but I don't know how to even start.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why chi-square? Distribution of $bar X$ is known, which should be enough to find $c$.
    $endgroup$
    – StubbornAtom
    Jan 8 at 17:38
















1












$begingroup$


Let $overline{X}$ be the average of a sample of $16$ independent normal random variables with mean $0$ and variance $1$. Determine c such that
$P(| overline{X} | < c) = .5$



I am having a lot of trouble with this question. I know it is related to chi-square but I don't know how to even start.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why chi-square? Distribution of $bar X$ is known, which should be enough to find $c$.
    $endgroup$
    – StubbornAtom
    Jan 8 at 17:38














1












1








1





$begingroup$


Let $overline{X}$ be the average of a sample of $16$ independent normal random variables with mean $0$ and variance $1$. Determine c such that
$P(| overline{X} | < c) = .5$



I am having a lot of trouble with this question. I know it is related to chi-square but I don't know how to even start.










share|cite|improve this question











$endgroup$




Let $overline{X}$ be the average of a sample of $16$ independent normal random variables with mean $0$ and variance $1$. Determine c such that
$P(| overline{X} | < c) = .5$



I am having a lot of trouble with this question. I know it is related to chi-square but I don't know how to even start.







statistics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 18:34









Sauhard Sharma

953318




953318










asked Jan 8 at 17:10









George HarrisonGeorge Harrison

133




133












  • $begingroup$
    Why chi-square? Distribution of $bar X$ is known, which should be enough to find $c$.
    $endgroup$
    – StubbornAtom
    Jan 8 at 17:38


















  • $begingroup$
    Why chi-square? Distribution of $bar X$ is known, which should be enough to find $c$.
    $endgroup$
    – StubbornAtom
    Jan 8 at 17:38
















$begingroup$
Why chi-square? Distribution of $bar X$ is known, which should be enough to find $c$.
$endgroup$
– StubbornAtom
Jan 8 at 17:38




$begingroup$
Why chi-square? Distribution of $bar X$ is known, which should be enough to find $c$.
$endgroup$
– StubbornAtom
Jan 8 at 17:38










2 Answers
2






active

oldest

votes


















0












$begingroup$

If $X$ is distributed as $Xsim mathcal N(0,1)$, then $frac1n sumlimits_{i=1}^{16} X_i=overline X$ is distributed as $overline Xsim mathcal Nleft( 0, frac1{16}right)$



Now we have to evaluate how $|overline X|$ is distributed in terms of $overline X$



$P(|overline X| leq c)=P(-c leq overline X leq c)$



$=P(overline X leq c)-P(overline X leq -c)$



$=P(overline X leq c)-left[ 1-P(overline X leq c) right]$



$=2 cdot P(overline X leq c)-1=2cdot F_{overline X}(c)-1$



At the next step we standardize $overline X$ to be able to use the cdf of the standard normal distribution.



$2cdot P(overline X leq c)-1=2cdot Phileft(frac{c-0}{sqrt{frac1{16}}} right)-1=2cdot Phileft(4c right)-1=0.5$



$2cdot Phileft(4c right)=1.5$



$Phileft(4c right)=0.75$



$4c=Phi^{-1}left(0.75right)$



$Phi^{-1}left(pright)$ is the inverse function of $Phileft(zright)$



$4c=0.674Rightarrow c=0.1685$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I am kind of lost on the step where we standardize X. Everything before that makes sense.
    $endgroup$
    – George Harrison
    Jan 8 at 21:25












  • $begingroup$
    @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
    $endgroup$
    – callculus
    Jan 8 at 21:31












  • $begingroup$
    I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
    $endgroup$
    – George Harrison
    Jan 8 at 21:36










  • $begingroup$
    In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
    $endgroup$
    – callculus
    Jan 8 at 21:37










  • $begingroup$
    @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
    $endgroup$
    – callculus
    Jan 8 at 21:48





















0












$begingroup$

HINT- The sum of independent normal variables also follows the normal distribution with



$$N(sum_{i=1}^n {mu_i},sum_{i=1}^n {sigma_i^2})$$



Also, if a random variable $X$ has mean $mu$ and variance $sigma^2$, then the random variable $Y=kX$ (where $k$ is a constant) has mean $kmu$ and variance $k^2sigma^2$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066446%2flet-x-be-the-average-of-a-sample-of-16-independent-normal-random-variables-with%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    If $X$ is distributed as $Xsim mathcal N(0,1)$, then $frac1n sumlimits_{i=1}^{16} X_i=overline X$ is distributed as $overline Xsim mathcal Nleft( 0, frac1{16}right)$



    Now we have to evaluate how $|overline X|$ is distributed in terms of $overline X$



    $P(|overline X| leq c)=P(-c leq overline X leq c)$



    $=P(overline X leq c)-P(overline X leq -c)$



    $=P(overline X leq c)-left[ 1-P(overline X leq c) right]$



    $=2 cdot P(overline X leq c)-1=2cdot F_{overline X}(c)-1$



    At the next step we standardize $overline X$ to be able to use the cdf of the standard normal distribution.



    $2cdot P(overline X leq c)-1=2cdot Phileft(frac{c-0}{sqrt{frac1{16}}} right)-1=2cdot Phileft(4c right)-1=0.5$



    $2cdot Phileft(4c right)=1.5$



    $Phileft(4c right)=0.75$



    $4c=Phi^{-1}left(0.75right)$



    $Phi^{-1}left(pright)$ is the inverse function of $Phileft(zright)$



    $4c=0.674Rightarrow c=0.1685$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I am kind of lost on the step where we standardize X. Everything before that makes sense.
      $endgroup$
      – George Harrison
      Jan 8 at 21:25












    • $begingroup$
      @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
      $endgroup$
      – callculus
      Jan 8 at 21:31












    • $begingroup$
      I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
      $endgroup$
      – George Harrison
      Jan 8 at 21:36










    • $begingroup$
      In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
      $endgroup$
      – callculus
      Jan 8 at 21:37










    • $begingroup$
      @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
      $endgroup$
      – callculus
      Jan 8 at 21:48


















    0












    $begingroup$

    If $X$ is distributed as $Xsim mathcal N(0,1)$, then $frac1n sumlimits_{i=1}^{16} X_i=overline X$ is distributed as $overline Xsim mathcal Nleft( 0, frac1{16}right)$



    Now we have to evaluate how $|overline X|$ is distributed in terms of $overline X$



    $P(|overline X| leq c)=P(-c leq overline X leq c)$



    $=P(overline X leq c)-P(overline X leq -c)$



    $=P(overline X leq c)-left[ 1-P(overline X leq c) right]$



    $=2 cdot P(overline X leq c)-1=2cdot F_{overline X}(c)-1$



    At the next step we standardize $overline X$ to be able to use the cdf of the standard normal distribution.



    $2cdot P(overline X leq c)-1=2cdot Phileft(frac{c-0}{sqrt{frac1{16}}} right)-1=2cdot Phileft(4c right)-1=0.5$



    $2cdot Phileft(4c right)=1.5$



    $Phileft(4c right)=0.75$



    $4c=Phi^{-1}left(0.75right)$



    $Phi^{-1}left(pright)$ is the inverse function of $Phileft(zright)$



    $4c=0.674Rightarrow c=0.1685$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I am kind of lost on the step where we standardize X. Everything before that makes sense.
      $endgroup$
      – George Harrison
      Jan 8 at 21:25












    • $begingroup$
      @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
      $endgroup$
      – callculus
      Jan 8 at 21:31












    • $begingroup$
      I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
      $endgroup$
      – George Harrison
      Jan 8 at 21:36










    • $begingroup$
      In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
      $endgroup$
      – callculus
      Jan 8 at 21:37










    • $begingroup$
      @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
      $endgroup$
      – callculus
      Jan 8 at 21:48
















    0












    0








    0





    $begingroup$

    If $X$ is distributed as $Xsim mathcal N(0,1)$, then $frac1n sumlimits_{i=1}^{16} X_i=overline X$ is distributed as $overline Xsim mathcal Nleft( 0, frac1{16}right)$



    Now we have to evaluate how $|overline X|$ is distributed in terms of $overline X$



    $P(|overline X| leq c)=P(-c leq overline X leq c)$



    $=P(overline X leq c)-P(overline X leq -c)$



    $=P(overline X leq c)-left[ 1-P(overline X leq c) right]$



    $=2 cdot P(overline X leq c)-1=2cdot F_{overline X}(c)-1$



    At the next step we standardize $overline X$ to be able to use the cdf of the standard normal distribution.



    $2cdot P(overline X leq c)-1=2cdot Phileft(frac{c-0}{sqrt{frac1{16}}} right)-1=2cdot Phileft(4c right)-1=0.5$



    $2cdot Phileft(4c right)=1.5$



    $Phileft(4c right)=0.75$



    $4c=Phi^{-1}left(0.75right)$



    $Phi^{-1}left(pright)$ is the inverse function of $Phileft(zright)$



    $4c=0.674Rightarrow c=0.1685$






    share|cite|improve this answer









    $endgroup$



    If $X$ is distributed as $Xsim mathcal N(0,1)$, then $frac1n sumlimits_{i=1}^{16} X_i=overline X$ is distributed as $overline Xsim mathcal Nleft( 0, frac1{16}right)$



    Now we have to evaluate how $|overline X|$ is distributed in terms of $overline X$



    $P(|overline X| leq c)=P(-c leq overline X leq c)$



    $=P(overline X leq c)-P(overline X leq -c)$



    $=P(overline X leq c)-left[ 1-P(overline X leq c) right]$



    $=2 cdot P(overline X leq c)-1=2cdot F_{overline X}(c)-1$



    At the next step we standardize $overline X$ to be able to use the cdf of the standard normal distribution.



    $2cdot P(overline X leq c)-1=2cdot Phileft(frac{c-0}{sqrt{frac1{16}}} right)-1=2cdot Phileft(4c right)-1=0.5$



    $2cdot Phileft(4c right)=1.5$



    $Phileft(4c right)=0.75$



    $4c=Phi^{-1}left(0.75right)$



    $Phi^{-1}left(pright)$ is the inverse function of $Phileft(zright)$



    $4c=0.674Rightarrow c=0.1685$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 8 at 19:06









    callculuscallculus

    17.9k31427




    17.9k31427












    • $begingroup$
      I am kind of lost on the step where we standardize X. Everything before that makes sense.
      $endgroup$
      – George Harrison
      Jan 8 at 21:25












    • $begingroup$
      @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
      $endgroup$
      – callculus
      Jan 8 at 21:31












    • $begingroup$
      I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
      $endgroup$
      – George Harrison
      Jan 8 at 21:36










    • $begingroup$
      In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
      $endgroup$
      – callculus
      Jan 8 at 21:37










    • $begingroup$
      @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
      $endgroup$
      – callculus
      Jan 8 at 21:48




















    • $begingroup$
      I am kind of lost on the step where we standardize X. Everything before that makes sense.
      $endgroup$
      – George Harrison
      Jan 8 at 21:25












    • $begingroup$
      @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
      $endgroup$
      – callculus
      Jan 8 at 21:31












    • $begingroup$
      I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
      $endgroup$
      – George Harrison
      Jan 8 at 21:36










    • $begingroup$
      In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
      $endgroup$
      – callculus
      Jan 8 at 21:37










    • $begingroup$
      @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
      $endgroup$
      – callculus
      Jan 8 at 21:48


















    $begingroup$
    I am kind of lost on the step where we standardize X. Everything before that makes sense.
    $endgroup$
    – George Harrison
    Jan 8 at 21:25






    $begingroup$
    I am kind of lost on the step where we standardize X. Everything before that makes sense.
    $endgroup$
    – George Harrison
    Jan 8 at 21:25














    $begingroup$
    @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
    $endgroup$
    – callculus
    Jan 8 at 21:31






    $begingroup$
    @GeorgeHarrison Let $overline X sim mathcal N(mu, sigma^2)$, then $Z=frac{overline X-mu}{sigma}sim N(0,1)$. In your exercise $mu=0$ and $sigma=sqrt{frac1{16}}=frac14$.
    $endgroup$
    – callculus
    Jan 8 at 21:31














    $begingroup$
    I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
    $endgroup$
    – George Harrison
    Jan 8 at 21:36




    $begingroup$
    I am not getting where you are getting the mean is 0 and the standard deviation is 0.25.
    $endgroup$
    – George Harrison
    Jan 8 at 21:36












    $begingroup$
    In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
    $endgroup$
    – callculus
    Jan 8 at 21:37




    $begingroup$
    In your example $P(overline Xleq c)$ is the same as $P(Zleq 4c)$ due standardizing.
    $endgroup$
    – callculus
    Jan 8 at 21:37












    $begingroup$
    @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
    $endgroup$
    – callculus
    Jan 8 at 21:48






    $begingroup$
    @GeorgeHarrison The expected value of the mean of n variables is the mean of the expected values. And for $n$ i.i.d random variables we have $Varleft (frac1n sumlimits_{i=1}^n X_i right)=frac1{n^2}cdot Varleft (sumlimits_{i=1}^n X_i right)=Varleft (sumlimits_{i=1}^n X_i right)$ $=frac1{n^2}cdotleft(Var(X_1)+Var(X_2)+ldots+Var(X_n)right)$. Since the $X_i$´s has the same variance we get: $=frac1{n^2}cdot ncdot Var(X_1)=frac1ncdot sigma^2$
    $endgroup$
    – callculus
    Jan 8 at 21:48













    0












    $begingroup$

    HINT- The sum of independent normal variables also follows the normal distribution with



    $$N(sum_{i=1}^n {mu_i},sum_{i=1}^n {sigma_i^2})$$



    Also, if a random variable $X$ has mean $mu$ and variance $sigma^2$, then the random variable $Y=kX$ (where $k$ is a constant) has mean $kmu$ and variance $k^2sigma^2$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      HINT- The sum of independent normal variables also follows the normal distribution with



      $$N(sum_{i=1}^n {mu_i},sum_{i=1}^n {sigma_i^2})$$



      Also, if a random variable $X$ has mean $mu$ and variance $sigma^2$, then the random variable $Y=kX$ (where $k$ is a constant) has mean $kmu$ and variance $k^2sigma^2$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        HINT- The sum of independent normal variables also follows the normal distribution with



        $$N(sum_{i=1}^n {mu_i},sum_{i=1}^n {sigma_i^2})$$



        Also, if a random variable $X$ has mean $mu$ and variance $sigma^2$, then the random variable $Y=kX$ (where $k$ is a constant) has mean $kmu$ and variance $k^2sigma^2$






        share|cite|improve this answer









        $endgroup$



        HINT- The sum of independent normal variables also follows the normal distribution with



        $$N(sum_{i=1}^n {mu_i},sum_{i=1}^n {sigma_i^2})$$



        Also, if a random variable $X$ has mean $mu$ and variance $sigma^2$, then the random variable $Y=kX$ (where $k$ is a constant) has mean $kmu$ and variance $k^2sigma^2$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 8 at 17:40









        Sauhard SharmaSauhard Sharma

        953318




        953318






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066446%2flet-x-be-the-average-of-a-sample-of-16-independent-normal-random-variables-with%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8