Spin group Spin(4,1)












3












$begingroup$


i'm interested in the spin group $Spin(4,1)$ wich correspond to the symplectic group $Sp(1,1)$. The only source that I could find about it was wikipedia (http://en.wikipedia.org/wiki/Spin_group). It seems that there is no general definition about what a indefinite symplectic group is. It would be helpful if someone could provide me a text (or a proof) where I could find how come $Spin(4,1)=Sp(1,1)$. Thanks alot to everyone.



For example Cornwell (Group Theory in Physics Vol II,page 392) says:



$Sp(r,,s)={Aintextbf{GL}(n;,mathbb C): A^T,J,A=J::{rm and}:: A^dagger,G,A=G}$, where $r+s=n/2$ and



$J=left(
begin{array}{clc}
0 && I_{ntimes n}\
-I_{ntimes n}
end{array}right),hspace{.5cm} G=left(
begin{array}{clclc}
-I_{rtimes r}&&0&&0&&0\
0&&I_{stimes s}&&0&&0\
0&&0&&-I_{rtimes r}&&0\
0&&0&&0&&I_{stimes s}
end{array}
right)$



And there is another definition tha involves quaternions... so, which one?










share|cite|improve this question











$endgroup$












  • $begingroup$
    See page 10 of mat.univie.ac.at/~cap/files/wisser.pdf . The associated Lie algebra isomorphism is a real consequence, by the way, of the exceptional isomorphism $B_2 cong C_2$ of semisimple (complex) Lie algebras, which itself has numerous beautiful consequences.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:34










  • $begingroup$
    At a glance the Lie algebras look to be isomorphic, possibly up to a reversal of the roles of $r, s$.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:52










  • $begingroup$
    Are you familiar with the classification of real semisimple Lie algebras?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:57










  • $begingroup$
    No, i'm not familiar, but please explain in those terms that I would learn this topic. I hate to be abother, but could you please tell me how could you tell, a glance, this would be isomorphic?
    $endgroup$
    – user208059
    Jan 15 '15 at 12:58












  • $begingroup$
    Are you familiar with how to think of quaternionic matrices as complex ones in the "usual" way?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:59


















3












$begingroup$


i'm interested in the spin group $Spin(4,1)$ wich correspond to the symplectic group $Sp(1,1)$. The only source that I could find about it was wikipedia (http://en.wikipedia.org/wiki/Spin_group). It seems that there is no general definition about what a indefinite symplectic group is. It would be helpful if someone could provide me a text (or a proof) where I could find how come $Spin(4,1)=Sp(1,1)$. Thanks alot to everyone.



For example Cornwell (Group Theory in Physics Vol II,page 392) says:



$Sp(r,,s)={Aintextbf{GL}(n;,mathbb C): A^T,J,A=J::{rm and}:: A^dagger,G,A=G}$, where $r+s=n/2$ and



$J=left(
begin{array}{clc}
0 && I_{ntimes n}\
-I_{ntimes n}
end{array}right),hspace{.5cm} G=left(
begin{array}{clclc}
-I_{rtimes r}&&0&&0&&0\
0&&I_{stimes s}&&0&&0\
0&&0&&-I_{rtimes r}&&0\
0&&0&&0&&I_{stimes s}
end{array}
right)$



And there is another definition tha involves quaternions... so, which one?










share|cite|improve this question











$endgroup$












  • $begingroup$
    See page 10 of mat.univie.ac.at/~cap/files/wisser.pdf . The associated Lie algebra isomorphism is a real consequence, by the way, of the exceptional isomorphism $B_2 cong C_2$ of semisimple (complex) Lie algebras, which itself has numerous beautiful consequences.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:34










  • $begingroup$
    At a glance the Lie algebras look to be isomorphic, possibly up to a reversal of the roles of $r, s$.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:52










  • $begingroup$
    Are you familiar with the classification of real semisimple Lie algebras?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:57










  • $begingroup$
    No, i'm not familiar, but please explain in those terms that I would learn this topic. I hate to be abother, but could you please tell me how could you tell, a glance, this would be isomorphic?
    $endgroup$
    – user208059
    Jan 15 '15 at 12:58












  • $begingroup$
    Are you familiar with how to think of quaternionic matrices as complex ones in the "usual" way?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:59
















3












3








3


2



$begingroup$


i'm interested in the spin group $Spin(4,1)$ wich correspond to the symplectic group $Sp(1,1)$. The only source that I could find about it was wikipedia (http://en.wikipedia.org/wiki/Spin_group). It seems that there is no general definition about what a indefinite symplectic group is. It would be helpful if someone could provide me a text (or a proof) where I could find how come $Spin(4,1)=Sp(1,1)$. Thanks alot to everyone.



For example Cornwell (Group Theory in Physics Vol II,page 392) says:



$Sp(r,,s)={Aintextbf{GL}(n;,mathbb C): A^T,J,A=J::{rm and}:: A^dagger,G,A=G}$, where $r+s=n/2$ and



$J=left(
begin{array}{clc}
0 && I_{ntimes n}\
-I_{ntimes n}
end{array}right),hspace{.5cm} G=left(
begin{array}{clclc}
-I_{rtimes r}&&0&&0&&0\
0&&I_{stimes s}&&0&&0\
0&&0&&-I_{rtimes r}&&0\
0&&0&&0&&I_{stimes s}
end{array}
right)$



And there is another definition tha involves quaternions... so, which one?










share|cite|improve this question











$endgroup$




i'm interested in the spin group $Spin(4,1)$ wich correspond to the symplectic group $Sp(1,1)$. The only source that I could find about it was wikipedia (http://en.wikipedia.org/wiki/Spin_group). It seems that there is no general definition about what a indefinite symplectic group is. It would be helpful if someone could provide me a text (or a proof) where I could find how come $Spin(4,1)=Sp(1,1)$. Thanks alot to everyone.



For example Cornwell (Group Theory in Physics Vol II,page 392) says:



$Sp(r,,s)={Aintextbf{GL}(n;,mathbb C): A^T,J,A=J::{rm and}:: A^dagger,G,A=G}$, where $r+s=n/2$ and



$J=left(
begin{array}{clc}
0 && I_{ntimes n}\
-I_{ntimes n}
end{array}right),hspace{.5cm} G=left(
begin{array}{clclc}
-I_{rtimes r}&&0&&0&&0\
0&&I_{stimes s}&&0&&0\
0&&0&&-I_{rtimes r}&&0\
0&&0&&0&&I_{stimes s}
end{array}
right)$



And there is another definition tha involves quaternions... so, which one?







group-theory reference-request lie-groups lie-algebras






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 '15 at 12:54







user208059

















asked Jan 15 '15 at 10:56









user208059user208059

213




213












  • $begingroup$
    See page 10 of mat.univie.ac.at/~cap/files/wisser.pdf . The associated Lie algebra isomorphism is a real consequence, by the way, of the exceptional isomorphism $B_2 cong C_2$ of semisimple (complex) Lie algebras, which itself has numerous beautiful consequences.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:34










  • $begingroup$
    At a glance the Lie algebras look to be isomorphic, possibly up to a reversal of the roles of $r, s$.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:52










  • $begingroup$
    Are you familiar with the classification of real semisimple Lie algebras?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:57










  • $begingroup$
    No, i'm not familiar, but please explain in those terms that I would learn this topic. I hate to be abother, but could you please tell me how could you tell, a glance, this would be isomorphic?
    $endgroup$
    – user208059
    Jan 15 '15 at 12:58












  • $begingroup$
    Are you familiar with how to think of quaternionic matrices as complex ones in the "usual" way?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:59




















  • $begingroup$
    See page 10 of mat.univie.ac.at/~cap/files/wisser.pdf . The associated Lie algebra isomorphism is a real consequence, by the way, of the exceptional isomorphism $B_2 cong C_2$ of semisimple (complex) Lie algebras, which itself has numerous beautiful consequences.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:34










  • $begingroup$
    At a glance the Lie algebras look to be isomorphic, possibly up to a reversal of the roles of $r, s$.
    $endgroup$
    – Travis
    Jan 15 '15 at 12:52










  • $begingroup$
    Are you familiar with the classification of real semisimple Lie algebras?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:57










  • $begingroup$
    No, i'm not familiar, but please explain in those terms that I would learn this topic. I hate to be abother, but could you please tell me how could you tell, a glance, this would be isomorphic?
    $endgroup$
    – user208059
    Jan 15 '15 at 12:58












  • $begingroup$
    Are you familiar with how to think of quaternionic matrices as complex ones in the "usual" way?
    $endgroup$
    – Travis
    Jan 15 '15 at 12:59


















$begingroup$
See page 10 of mat.univie.ac.at/~cap/files/wisser.pdf . The associated Lie algebra isomorphism is a real consequence, by the way, of the exceptional isomorphism $B_2 cong C_2$ of semisimple (complex) Lie algebras, which itself has numerous beautiful consequences.
$endgroup$
– Travis
Jan 15 '15 at 12:34




$begingroup$
See page 10 of mat.univie.ac.at/~cap/files/wisser.pdf . The associated Lie algebra isomorphism is a real consequence, by the way, of the exceptional isomorphism $B_2 cong C_2$ of semisimple (complex) Lie algebras, which itself has numerous beautiful consequences.
$endgroup$
– Travis
Jan 15 '15 at 12:34












$begingroup$
At a glance the Lie algebras look to be isomorphic, possibly up to a reversal of the roles of $r, s$.
$endgroup$
– Travis
Jan 15 '15 at 12:52




$begingroup$
At a glance the Lie algebras look to be isomorphic, possibly up to a reversal of the roles of $r, s$.
$endgroup$
– Travis
Jan 15 '15 at 12:52












$begingroup$
Are you familiar with the classification of real semisimple Lie algebras?
$endgroup$
– Travis
Jan 15 '15 at 12:57




$begingroup$
Are you familiar with the classification of real semisimple Lie algebras?
$endgroup$
– Travis
Jan 15 '15 at 12:57












$begingroup$
No, i'm not familiar, but please explain in those terms that I would learn this topic. I hate to be abother, but could you please tell me how could you tell, a glance, this would be isomorphic?
$endgroup$
– user208059
Jan 15 '15 at 12:58






$begingroup$
No, i'm not familiar, but please explain in those terms that I would learn this topic. I hate to be abother, but could you please tell me how could you tell, a glance, this would be isomorphic?
$endgroup$
– user208059
Jan 15 '15 at 12:58














$begingroup$
Are you familiar with how to think of quaternionic matrices as complex ones in the "usual" way?
$endgroup$
– Travis
Jan 15 '15 at 12:59






$begingroup$
Are you familiar with how to think of quaternionic matrices as complex ones in the "usual" way?
$endgroup$
– Travis
Jan 15 '15 at 12:59












1 Answer
1






active

oldest

votes


















1












$begingroup$


Proposition A:
$$U(p,q;mathbb{H})~cong~Sp(p,q).tag{1}$$




Sketched proof:




  1. The indefinite unitary group over the quaternions is
    $$U(p,q;mathbb{H})~:=~ left{
    xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{dagger}eta x =eta right. right},qquad n~=~p+q,$$

    $$ ~=~left{
    xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta} x ={bf 1}_{n times n} right. right},qquad x^{daggereta}~:=~eta x^{dagger}eta,$$

    $$ eta~:=~{rm diag}(underbrace{+1,ldots,+1}_p,underbrace{-1,dots, -1}_q),qquad eta^2~=~{bf 1}_{n times n} tag{2} . $$
    Let us mention for completeness that the corresponding Lie algebra
    $$u(p,q;mathbb{H})~:=~ left{
    xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta}=- x right. right} tag{3} $$

    of anti-Hermitian matrices has real dimension
    $$dim_{mathbb{R}}u(p,q;mathbb{H})~=~4frac{n(n-1)}{2}+3n~=~n(2n+1).tag{4} $$


  2. The indefinite unitary group over the complex numbers is
    $$U(2p,2q)~:=~ left{
    Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^{dagger}(etaotimes {bf 1}_{2 times 2} ) M =etaotimes {bf 1}_{2 times 2} right. right}. tag{5}$$


  3. The symplectic group over the complex numbers is
    $$Sp(2n;mathbb{C})~:=~ left{
    Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^tOmega M =Omega right. right}$$

    $$~cong~left{
    Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^t(etaotimesomega) M =(etaotimesomega) right. right}, $$

    $$ Omega ~:=~{bf 1}_{n times n}otimes omega~=~-Omega^t, qquad
    omega ~:=~mathrm{i}sigma_2~=~-omega^t , qquadOmega^2~=~-{bf 1}_{2n times 2n}.tag{6}$$

    The proof that we can use $etaotimesomega$ rather than $Omega$ as symplectic unit follows from index relabelling of rows (and the corresponding index relabelling of columns).


  4. The indefinite symplectic group is defined as
    $$Sp(p,q)~:=~U(2p,2q) cap Sp(2n;mathbb{C}), $$
    $$~=~left{ Min U(2p,2q) left| M^t(etaotimesomega) M =(etaotimesomega) right. right} $$
    $$~=~left{ Min U(2p,2q) left| overline{M}Omega = Omega M right. right}, qquad eta Omega~=~ Omegaeta.tag{7} $$


  5. The condition
    $$overline{M}Omega ~=~ Omega M tag{8} $$

    is the condition
    $$ overline{m}_{ij}omega ~=~omega m_{ij}, qquad
    i,j~in~{1,ldots,n},tag{9} $$

    that each of the $2times 2$ blocks $m_{ij}$ in
    $$M~=~begin{pmatrix} m_{11} &ldots & m_{1n} cr
    vdots &ddots & vdots cr
    m_{n1} &ldots & m_{nn}end{pmatrix}~in~{rm Mat}_{2ntimes 2n}(mathbb{C})tag{10}$$

    can be identified with a quaternion, cf. e.g. my Phys.SE answer here. In other words, there is an $mathbb{R}$-algebra isomorphism
    $$ Phi:~~{rm Mat}_{ntimes n}(mathbb{H})~~longrightarrow left{
    Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| overline{M} Omega = Omega M right. right}.tag{11} $$

    $Phi$ is actual a star algebra isomorphism
    $$ Phi(x^{dagger})~=~Phi(x)^{dagger}, qquad x~in~{rm Mat}_{ntimes n}(mathbb{H}).tag{12}$$


  6. Conclude the group isomorphism
    $$U(p,q;mathbb{H})~stackrel{Phi_|}{cong}~Sp(p,q).tag{13}$$
    $Box$




Proposition B:




  1. $G:=U(2; mathbb{H})$ is (the double cover of) the special orthogonal group $SO(5).$


  2. $G:=U(1,1; mathbb{H})$ is (the double cover of) the restricted de Sitter group $SO^+(1,4).$





Sketched proof:




  1. Since quaternions are non-commutative, care should be taken when defining
    trace (& determinant). The reduced trace is defined as
    $$ {rm Re~tr} (x)~=~frac{1}{2} {rm tr} (x+x^{dagger})~=~frac{1}{2} {rm tr} (Phi(x)), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}),tag{14} $$
    which is cyclic,
    e.g. because
    $$ {rm Re}(qq^{prime})~=~{rm Re}(q^{prime}q), qquad q,q^{prime}~in~mathbb{H}.tag{15} $$


  2. There is a bijective isometry from $mathbb{R}^5$ [or $mathbb{R}^{1,4}$] to the $mathbb{R}$-inner product space
    $$ V~=~ left{ xin {rm Mat}_{2times 2}(mathbb{H}) left| x^{daggereta}=x~~wedge~~ {rm Re~tr} (x)=0 right. right} $$
    $$~=~left{left. begin{pmatrix} r & q cr pmbar{q} & -r end{pmatrix}in {rm Mat}_{2times 2}(mathbb{H}) right| rinmathbb{R}~~wedge~~qinmathbb{H}right},tag{16}$$
    equipped with the (indefinite) quadratic form
    $$ || x||^2~:=~ frac{1}{2}{rm Re~tr} (x^2)~=~r^2 pm |q|^2 , tag{17}$$
    where $pm$ corresponds to the two cases in Proposition B.


  3. There is a group action $rho:Gtimes V to V$ given by conjugation
    $$ rho(g)x~:=~gxg^{-1}~=~gxg^{daggereta}, qquad g~in ~G, qquad x~in~ V, tag{18}$$
    which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
    In other words, there is a Lie group homomorphism
    $rho: Grightarrow O(V)$, where
    $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{19}$$
    $Box$




Proposition C:
$$G~:=~SL(2;mathbb{H})~:=~Phi^{-1}(SL(4;mathbb{C})) tag{20}$$
is (the double cover of) the special orthogonal group $SO^+(1,5).$




Sketched proof:




  1. Let
    $$so(4,mathbb{C})~:=~left{
    Ain{rm Mat}_{4times 4}(mathbb{C}) left| A^t = -A right. right}tag{21}$$

    denote the set of antisymmetric complex $4times 4$ matrices,
    endowed with the Pfaffian
    $${rm Pf}(A)~=~frac{1}{8}sum_{mu,nu,lambda,sigma=1}^4epsilon_{munulambdasigma}A^{munu} A^{lambdasigma}
    ~=~A^{12}A^{34} + A^{31}A^{24} + A^{23}A^{14}, $$

    $$ epsilon_{1234}~=~1.tag{22}$$


  2. If we define a "transposed" quaternion as
    $$ q^t~:=~q|_{q^2to-q^2}~=~-jbar{q}j, qquad q~in~mathbb{H}, tag{23}$$
    then
    $$ Phi(x)^t~=~Phi(x^t), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}). tag{24}$$


  3. Let the set of "antisymmetric" quaternion $2times 2$ matrices be
    $$so(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^t=-x right}~=~Phi^{-1}(so(4,mathbb{C}))~=~V({bf 1}_{2 times 2}otimes j) ,tag{25} $$
    where
    $$ V~:=~u(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^{dagger}=x right} $$
    $$~=~left{left. begin{pmatrix} r & q cr bar{q} & s end{pmatrix} in{rm Mat}_{2times 2}(mathbb{H}) right| r,sinmathbb{R}, ~qinmathbb{H} right}
    ~cong~mathbb{R}^{1,5}tag{26} $$

    is the real vector space of Hermitian quaternion $2times 2$ matrices.


  4. Endow $V$ with the indefinite quadratic form
    $$ ||x||^2 ~=~ {rm Pf}(Phi(x({bf 1}_{2 times 2}otimes j)))~=~ frac{1}{2}{rm Re~tr} (x^2)-frac{1}{2}{rm Re~tr} (x)^2~=~rs pm |q|^2 .tag{27} $$


  5. There is a group action $rho:Gtimes V to V$
    $$ rho(g)x~:=~gxg^{dagger}~=~-gx({bf 1}_{2 times 2}otimes j)g^t({bf 1}_{2 times 2}otimes j), qquad g~in ~G, qquad x~in~ V, tag{28}$$
    which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
    In other words, there is a Lie group homomorphism
    $rho: Grightarrow O(V)$, where
    $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{29}$$
    $Box$



References:




  1. Paul Garrett, Sporadic isogenies to orthogonal groups, 2015.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1105200%2fspin-group-spin4-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$


    Proposition A:
    $$U(p,q;mathbb{H})~cong~Sp(p,q).tag{1}$$




    Sketched proof:




    1. The indefinite unitary group over the quaternions is
      $$U(p,q;mathbb{H})~:=~ left{
      xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{dagger}eta x =eta right. right},qquad n~=~p+q,$$

      $$ ~=~left{
      xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta} x ={bf 1}_{n times n} right. right},qquad x^{daggereta}~:=~eta x^{dagger}eta,$$

      $$ eta~:=~{rm diag}(underbrace{+1,ldots,+1}_p,underbrace{-1,dots, -1}_q),qquad eta^2~=~{bf 1}_{n times n} tag{2} . $$
      Let us mention for completeness that the corresponding Lie algebra
      $$u(p,q;mathbb{H})~:=~ left{
      xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta}=- x right. right} tag{3} $$

      of anti-Hermitian matrices has real dimension
      $$dim_{mathbb{R}}u(p,q;mathbb{H})~=~4frac{n(n-1)}{2}+3n~=~n(2n+1).tag{4} $$


    2. The indefinite unitary group over the complex numbers is
      $$U(2p,2q)~:=~ left{
      Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^{dagger}(etaotimes {bf 1}_{2 times 2} ) M =etaotimes {bf 1}_{2 times 2} right. right}. tag{5}$$


    3. The symplectic group over the complex numbers is
      $$Sp(2n;mathbb{C})~:=~ left{
      Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^tOmega M =Omega right. right}$$

      $$~cong~left{
      Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^t(etaotimesomega) M =(etaotimesomega) right. right}, $$

      $$ Omega ~:=~{bf 1}_{n times n}otimes omega~=~-Omega^t, qquad
      omega ~:=~mathrm{i}sigma_2~=~-omega^t , qquadOmega^2~=~-{bf 1}_{2n times 2n}.tag{6}$$

      The proof that we can use $etaotimesomega$ rather than $Omega$ as symplectic unit follows from index relabelling of rows (and the corresponding index relabelling of columns).


    4. The indefinite symplectic group is defined as
      $$Sp(p,q)~:=~U(2p,2q) cap Sp(2n;mathbb{C}), $$
      $$~=~left{ Min U(2p,2q) left| M^t(etaotimesomega) M =(etaotimesomega) right. right} $$
      $$~=~left{ Min U(2p,2q) left| overline{M}Omega = Omega M right. right}, qquad eta Omega~=~ Omegaeta.tag{7} $$


    5. The condition
      $$overline{M}Omega ~=~ Omega M tag{8} $$

      is the condition
      $$ overline{m}_{ij}omega ~=~omega m_{ij}, qquad
      i,j~in~{1,ldots,n},tag{9} $$

      that each of the $2times 2$ blocks $m_{ij}$ in
      $$M~=~begin{pmatrix} m_{11} &ldots & m_{1n} cr
      vdots &ddots & vdots cr
      m_{n1} &ldots & m_{nn}end{pmatrix}~in~{rm Mat}_{2ntimes 2n}(mathbb{C})tag{10}$$

      can be identified with a quaternion, cf. e.g. my Phys.SE answer here. In other words, there is an $mathbb{R}$-algebra isomorphism
      $$ Phi:~~{rm Mat}_{ntimes n}(mathbb{H})~~longrightarrow left{
      Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| overline{M} Omega = Omega M right. right}.tag{11} $$

      $Phi$ is actual a star algebra isomorphism
      $$ Phi(x^{dagger})~=~Phi(x)^{dagger}, qquad x~in~{rm Mat}_{ntimes n}(mathbb{H}).tag{12}$$


    6. Conclude the group isomorphism
      $$U(p,q;mathbb{H})~stackrel{Phi_|}{cong}~Sp(p,q).tag{13}$$
      $Box$




    Proposition B:




    1. $G:=U(2; mathbb{H})$ is (the double cover of) the special orthogonal group $SO(5).$


    2. $G:=U(1,1; mathbb{H})$ is (the double cover of) the restricted de Sitter group $SO^+(1,4).$





    Sketched proof:




    1. Since quaternions are non-commutative, care should be taken when defining
      trace (& determinant). The reduced trace is defined as
      $$ {rm Re~tr} (x)~=~frac{1}{2} {rm tr} (x+x^{dagger})~=~frac{1}{2} {rm tr} (Phi(x)), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}),tag{14} $$
      which is cyclic,
      e.g. because
      $$ {rm Re}(qq^{prime})~=~{rm Re}(q^{prime}q), qquad q,q^{prime}~in~mathbb{H}.tag{15} $$


    2. There is a bijective isometry from $mathbb{R}^5$ [or $mathbb{R}^{1,4}$] to the $mathbb{R}$-inner product space
      $$ V~=~ left{ xin {rm Mat}_{2times 2}(mathbb{H}) left| x^{daggereta}=x~~wedge~~ {rm Re~tr} (x)=0 right. right} $$
      $$~=~left{left. begin{pmatrix} r & q cr pmbar{q} & -r end{pmatrix}in {rm Mat}_{2times 2}(mathbb{H}) right| rinmathbb{R}~~wedge~~qinmathbb{H}right},tag{16}$$
      equipped with the (indefinite) quadratic form
      $$ || x||^2~:=~ frac{1}{2}{rm Re~tr} (x^2)~=~r^2 pm |q|^2 , tag{17}$$
      where $pm$ corresponds to the two cases in Proposition B.


    3. There is a group action $rho:Gtimes V to V$ given by conjugation
      $$ rho(g)x~:=~gxg^{-1}~=~gxg^{daggereta}, qquad g~in ~G, qquad x~in~ V, tag{18}$$
      which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
      In other words, there is a Lie group homomorphism
      $rho: Grightarrow O(V)$, where
      $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{19}$$
      $Box$




    Proposition C:
    $$G~:=~SL(2;mathbb{H})~:=~Phi^{-1}(SL(4;mathbb{C})) tag{20}$$
    is (the double cover of) the special orthogonal group $SO^+(1,5).$




    Sketched proof:




    1. Let
      $$so(4,mathbb{C})~:=~left{
      Ain{rm Mat}_{4times 4}(mathbb{C}) left| A^t = -A right. right}tag{21}$$

      denote the set of antisymmetric complex $4times 4$ matrices,
      endowed with the Pfaffian
      $${rm Pf}(A)~=~frac{1}{8}sum_{mu,nu,lambda,sigma=1}^4epsilon_{munulambdasigma}A^{munu} A^{lambdasigma}
      ~=~A^{12}A^{34} + A^{31}A^{24} + A^{23}A^{14}, $$

      $$ epsilon_{1234}~=~1.tag{22}$$


    2. If we define a "transposed" quaternion as
      $$ q^t~:=~q|_{q^2to-q^2}~=~-jbar{q}j, qquad q~in~mathbb{H}, tag{23}$$
      then
      $$ Phi(x)^t~=~Phi(x^t), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}). tag{24}$$


    3. Let the set of "antisymmetric" quaternion $2times 2$ matrices be
      $$so(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^t=-x right}~=~Phi^{-1}(so(4,mathbb{C}))~=~V({bf 1}_{2 times 2}otimes j) ,tag{25} $$
      where
      $$ V~:=~u(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^{dagger}=x right} $$
      $$~=~left{left. begin{pmatrix} r & q cr bar{q} & s end{pmatrix} in{rm Mat}_{2times 2}(mathbb{H}) right| r,sinmathbb{R}, ~qinmathbb{H} right}
      ~cong~mathbb{R}^{1,5}tag{26} $$

      is the real vector space of Hermitian quaternion $2times 2$ matrices.


    4. Endow $V$ with the indefinite quadratic form
      $$ ||x||^2 ~=~ {rm Pf}(Phi(x({bf 1}_{2 times 2}otimes j)))~=~ frac{1}{2}{rm Re~tr} (x^2)-frac{1}{2}{rm Re~tr} (x)^2~=~rs pm |q|^2 .tag{27} $$


    5. There is a group action $rho:Gtimes V to V$
      $$ rho(g)x~:=~gxg^{dagger}~=~-gx({bf 1}_{2 times 2}otimes j)g^t({bf 1}_{2 times 2}otimes j), qquad g~in ~G, qquad x~in~ V, tag{28}$$
      which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
      In other words, there is a Lie group homomorphism
      $rho: Grightarrow O(V)$, where
      $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{29}$$
      $Box$



    References:




    1. Paul Garrett, Sporadic isogenies to orthogonal groups, 2015.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$


      Proposition A:
      $$U(p,q;mathbb{H})~cong~Sp(p,q).tag{1}$$




      Sketched proof:




      1. The indefinite unitary group over the quaternions is
        $$U(p,q;mathbb{H})~:=~ left{
        xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{dagger}eta x =eta right. right},qquad n~=~p+q,$$

        $$ ~=~left{
        xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta} x ={bf 1}_{n times n} right. right},qquad x^{daggereta}~:=~eta x^{dagger}eta,$$

        $$ eta~:=~{rm diag}(underbrace{+1,ldots,+1}_p,underbrace{-1,dots, -1}_q),qquad eta^2~=~{bf 1}_{n times n} tag{2} . $$
        Let us mention for completeness that the corresponding Lie algebra
        $$u(p,q;mathbb{H})~:=~ left{
        xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta}=- x right. right} tag{3} $$

        of anti-Hermitian matrices has real dimension
        $$dim_{mathbb{R}}u(p,q;mathbb{H})~=~4frac{n(n-1)}{2}+3n~=~n(2n+1).tag{4} $$


      2. The indefinite unitary group over the complex numbers is
        $$U(2p,2q)~:=~ left{
        Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^{dagger}(etaotimes {bf 1}_{2 times 2} ) M =etaotimes {bf 1}_{2 times 2} right. right}. tag{5}$$


      3. The symplectic group over the complex numbers is
        $$Sp(2n;mathbb{C})~:=~ left{
        Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^tOmega M =Omega right. right}$$

        $$~cong~left{
        Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^t(etaotimesomega) M =(etaotimesomega) right. right}, $$

        $$ Omega ~:=~{bf 1}_{n times n}otimes omega~=~-Omega^t, qquad
        omega ~:=~mathrm{i}sigma_2~=~-omega^t , qquadOmega^2~=~-{bf 1}_{2n times 2n}.tag{6}$$

        The proof that we can use $etaotimesomega$ rather than $Omega$ as symplectic unit follows from index relabelling of rows (and the corresponding index relabelling of columns).


      4. The indefinite symplectic group is defined as
        $$Sp(p,q)~:=~U(2p,2q) cap Sp(2n;mathbb{C}), $$
        $$~=~left{ Min U(2p,2q) left| M^t(etaotimesomega) M =(etaotimesomega) right. right} $$
        $$~=~left{ Min U(2p,2q) left| overline{M}Omega = Omega M right. right}, qquad eta Omega~=~ Omegaeta.tag{7} $$


      5. The condition
        $$overline{M}Omega ~=~ Omega M tag{8} $$

        is the condition
        $$ overline{m}_{ij}omega ~=~omega m_{ij}, qquad
        i,j~in~{1,ldots,n},tag{9} $$

        that each of the $2times 2$ blocks $m_{ij}$ in
        $$M~=~begin{pmatrix} m_{11} &ldots & m_{1n} cr
        vdots &ddots & vdots cr
        m_{n1} &ldots & m_{nn}end{pmatrix}~in~{rm Mat}_{2ntimes 2n}(mathbb{C})tag{10}$$

        can be identified with a quaternion, cf. e.g. my Phys.SE answer here. In other words, there is an $mathbb{R}$-algebra isomorphism
        $$ Phi:~~{rm Mat}_{ntimes n}(mathbb{H})~~longrightarrow left{
        Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| overline{M} Omega = Omega M right. right}.tag{11} $$

        $Phi$ is actual a star algebra isomorphism
        $$ Phi(x^{dagger})~=~Phi(x)^{dagger}, qquad x~in~{rm Mat}_{ntimes n}(mathbb{H}).tag{12}$$


      6. Conclude the group isomorphism
        $$U(p,q;mathbb{H})~stackrel{Phi_|}{cong}~Sp(p,q).tag{13}$$
        $Box$




      Proposition B:




      1. $G:=U(2; mathbb{H})$ is (the double cover of) the special orthogonal group $SO(5).$


      2. $G:=U(1,1; mathbb{H})$ is (the double cover of) the restricted de Sitter group $SO^+(1,4).$





      Sketched proof:




      1. Since quaternions are non-commutative, care should be taken when defining
        trace (& determinant). The reduced trace is defined as
        $$ {rm Re~tr} (x)~=~frac{1}{2} {rm tr} (x+x^{dagger})~=~frac{1}{2} {rm tr} (Phi(x)), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}),tag{14} $$
        which is cyclic,
        e.g. because
        $$ {rm Re}(qq^{prime})~=~{rm Re}(q^{prime}q), qquad q,q^{prime}~in~mathbb{H}.tag{15} $$


      2. There is a bijective isometry from $mathbb{R}^5$ [or $mathbb{R}^{1,4}$] to the $mathbb{R}$-inner product space
        $$ V~=~ left{ xin {rm Mat}_{2times 2}(mathbb{H}) left| x^{daggereta}=x~~wedge~~ {rm Re~tr} (x)=0 right. right} $$
        $$~=~left{left. begin{pmatrix} r & q cr pmbar{q} & -r end{pmatrix}in {rm Mat}_{2times 2}(mathbb{H}) right| rinmathbb{R}~~wedge~~qinmathbb{H}right},tag{16}$$
        equipped with the (indefinite) quadratic form
        $$ || x||^2~:=~ frac{1}{2}{rm Re~tr} (x^2)~=~r^2 pm |q|^2 , tag{17}$$
        where $pm$ corresponds to the two cases in Proposition B.


      3. There is a group action $rho:Gtimes V to V$ given by conjugation
        $$ rho(g)x~:=~gxg^{-1}~=~gxg^{daggereta}, qquad g~in ~G, qquad x~in~ V, tag{18}$$
        which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
        In other words, there is a Lie group homomorphism
        $rho: Grightarrow O(V)$, where
        $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{19}$$
        $Box$




      Proposition C:
      $$G~:=~SL(2;mathbb{H})~:=~Phi^{-1}(SL(4;mathbb{C})) tag{20}$$
      is (the double cover of) the special orthogonal group $SO^+(1,5).$




      Sketched proof:




      1. Let
        $$so(4,mathbb{C})~:=~left{
        Ain{rm Mat}_{4times 4}(mathbb{C}) left| A^t = -A right. right}tag{21}$$

        denote the set of antisymmetric complex $4times 4$ matrices,
        endowed with the Pfaffian
        $${rm Pf}(A)~=~frac{1}{8}sum_{mu,nu,lambda,sigma=1}^4epsilon_{munulambdasigma}A^{munu} A^{lambdasigma}
        ~=~A^{12}A^{34} + A^{31}A^{24} + A^{23}A^{14}, $$

        $$ epsilon_{1234}~=~1.tag{22}$$


      2. If we define a "transposed" quaternion as
        $$ q^t~:=~q|_{q^2to-q^2}~=~-jbar{q}j, qquad q~in~mathbb{H}, tag{23}$$
        then
        $$ Phi(x)^t~=~Phi(x^t), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}). tag{24}$$


      3. Let the set of "antisymmetric" quaternion $2times 2$ matrices be
        $$so(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^t=-x right}~=~Phi^{-1}(so(4,mathbb{C}))~=~V({bf 1}_{2 times 2}otimes j) ,tag{25} $$
        where
        $$ V~:=~u(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^{dagger}=x right} $$
        $$~=~left{left. begin{pmatrix} r & q cr bar{q} & s end{pmatrix} in{rm Mat}_{2times 2}(mathbb{H}) right| r,sinmathbb{R}, ~qinmathbb{H} right}
        ~cong~mathbb{R}^{1,5}tag{26} $$

        is the real vector space of Hermitian quaternion $2times 2$ matrices.


      4. Endow $V$ with the indefinite quadratic form
        $$ ||x||^2 ~=~ {rm Pf}(Phi(x({bf 1}_{2 times 2}otimes j)))~=~ frac{1}{2}{rm Re~tr} (x^2)-frac{1}{2}{rm Re~tr} (x)^2~=~rs pm |q|^2 .tag{27} $$


      5. There is a group action $rho:Gtimes V to V$
        $$ rho(g)x~:=~gxg^{dagger}~=~-gx({bf 1}_{2 times 2}otimes j)g^t({bf 1}_{2 times 2}otimes j), qquad g~in ~G, qquad x~in~ V, tag{28}$$
        which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
        In other words, there is a Lie group homomorphism
        $rho: Grightarrow O(V)$, where
        $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{29}$$
        $Box$



      References:




      1. Paul Garrett, Sporadic isogenies to orthogonal groups, 2015.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$


        Proposition A:
        $$U(p,q;mathbb{H})~cong~Sp(p,q).tag{1}$$




        Sketched proof:




        1. The indefinite unitary group over the quaternions is
          $$U(p,q;mathbb{H})~:=~ left{
          xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{dagger}eta x =eta right. right},qquad n~=~p+q,$$

          $$ ~=~left{
          xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta} x ={bf 1}_{n times n} right. right},qquad x^{daggereta}~:=~eta x^{dagger}eta,$$

          $$ eta~:=~{rm diag}(underbrace{+1,ldots,+1}_p,underbrace{-1,dots, -1}_q),qquad eta^2~=~{bf 1}_{n times n} tag{2} . $$
          Let us mention for completeness that the corresponding Lie algebra
          $$u(p,q;mathbb{H})~:=~ left{
          xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta}=- x right. right} tag{3} $$

          of anti-Hermitian matrices has real dimension
          $$dim_{mathbb{R}}u(p,q;mathbb{H})~=~4frac{n(n-1)}{2}+3n~=~n(2n+1).tag{4} $$


        2. The indefinite unitary group over the complex numbers is
          $$U(2p,2q)~:=~ left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^{dagger}(etaotimes {bf 1}_{2 times 2} ) M =etaotimes {bf 1}_{2 times 2} right. right}. tag{5}$$


        3. The symplectic group over the complex numbers is
          $$Sp(2n;mathbb{C})~:=~ left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^tOmega M =Omega right. right}$$

          $$~cong~left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^t(etaotimesomega) M =(etaotimesomega) right. right}, $$

          $$ Omega ~:=~{bf 1}_{n times n}otimes omega~=~-Omega^t, qquad
          omega ~:=~mathrm{i}sigma_2~=~-omega^t , qquadOmega^2~=~-{bf 1}_{2n times 2n}.tag{6}$$

          The proof that we can use $etaotimesomega$ rather than $Omega$ as symplectic unit follows from index relabelling of rows (and the corresponding index relabelling of columns).


        4. The indefinite symplectic group is defined as
          $$Sp(p,q)~:=~U(2p,2q) cap Sp(2n;mathbb{C}), $$
          $$~=~left{ Min U(2p,2q) left| M^t(etaotimesomega) M =(etaotimesomega) right. right} $$
          $$~=~left{ Min U(2p,2q) left| overline{M}Omega = Omega M right. right}, qquad eta Omega~=~ Omegaeta.tag{7} $$


        5. The condition
          $$overline{M}Omega ~=~ Omega M tag{8} $$

          is the condition
          $$ overline{m}_{ij}omega ~=~omega m_{ij}, qquad
          i,j~in~{1,ldots,n},tag{9} $$

          that each of the $2times 2$ blocks $m_{ij}$ in
          $$M~=~begin{pmatrix} m_{11} &ldots & m_{1n} cr
          vdots &ddots & vdots cr
          m_{n1} &ldots & m_{nn}end{pmatrix}~in~{rm Mat}_{2ntimes 2n}(mathbb{C})tag{10}$$

          can be identified with a quaternion, cf. e.g. my Phys.SE answer here. In other words, there is an $mathbb{R}$-algebra isomorphism
          $$ Phi:~~{rm Mat}_{ntimes n}(mathbb{H})~~longrightarrow left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| overline{M} Omega = Omega M right. right}.tag{11} $$

          $Phi$ is actual a star algebra isomorphism
          $$ Phi(x^{dagger})~=~Phi(x)^{dagger}, qquad x~in~{rm Mat}_{ntimes n}(mathbb{H}).tag{12}$$


        6. Conclude the group isomorphism
          $$U(p,q;mathbb{H})~stackrel{Phi_|}{cong}~Sp(p,q).tag{13}$$
          $Box$




        Proposition B:




        1. $G:=U(2; mathbb{H})$ is (the double cover of) the special orthogonal group $SO(5).$


        2. $G:=U(1,1; mathbb{H})$ is (the double cover of) the restricted de Sitter group $SO^+(1,4).$





        Sketched proof:




        1. Since quaternions are non-commutative, care should be taken when defining
          trace (& determinant). The reduced trace is defined as
          $$ {rm Re~tr} (x)~=~frac{1}{2} {rm tr} (x+x^{dagger})~=~frac{1}{2} {rm tr} (Phi(x)), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}),tag{14} $$
          which is cyclic,
          e.g. because
          $$ {rm Re}(qq^{prime})~=~{rm Re}(q^{prime}q), qquad q,q^{prime}~in~mathbb{H}.tag{15} $$


        2. There is a bijective isometry from $mathbb{R}^5$ [or $mathbb{R}^{1,4}$] to the $mathbb{R}$-inner product space
          $$ V~=~ left{ xin {rm Mat}_{2times 2}(mathbb{H}) left| x^{daggereta}=x~~wedge~~ {rm Re~tr} (x)=0 right. right} $$
          $$~=~left{left. begin{pmatrix} r & q cr pmbar{q} & -r end{pmatrix}in {rm Mat}_{2times 2}(mathbb{H}) right| rinmathbb{R}~~wedge~~qinmathbb{H}right},tag{16}$$
          equipped with the (indefinite) quadratic form
          $$ || x||^2~:=~ frac{1}{2}{rm Re~tr} (x^2)~=~r^2 pm |q|^2 , tag{17}$$
          where $pm$ corresponds to the two cases in Proposition B.


        3. There is a group action $rho:Gtimes V to V$ given by conjugation
          $$ rho(g)x~:=~gxg^{-1}~=~gxg^{daggereta}, qquad g~in ~G, qquad x~in~ V, tag{18}$$
          which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
          In other words, there is a Lie group homomorphism
          $rho: Grightarrow O(V)$, where
          $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{19}$$
          $Box$




        Proposition C:
        $$G~:=~SL(2;mathbb{H})~:=~Phi^{-1}(SL(4;mathbb{C})) tag{20}$$
        is (the double cover of) the special orthogonal group $SO^+(1,5).$




        Sketched proof:




        1. Let
          $$so(4,mathbb{C})~:=~left{
          Ain{rm Mat}_{4times 4}(mathbb{C}) left| A^t = -A right. right}tag{21}$$

          denote the set of antisymmetric complex $4times 4$ matrices,
          endowed with the Pfaffian
          $${rm Pf}(A)~=~frac{1}{8}sum_{mu,nu,lambda,sigma=1}^4epsilon_{munulambdasigma}A^{munu} A^{lambdasigma}
          ~=~A^{12}A^{34} + A^{31}A^{24} + A^{23}A^{14}, $$

          $$ epsilon_{1234}~=~1.tag{22}$$


        2. If we define a "transposed" quaternion as
          $$ q^t~:=~q|_{q^2to-q^2}~=~-jbar{q}j, qquad q~in~mathbb{H}, tag{23}$$
          then
          $$ Phi(x)^t~=~Phi(x^t), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}). tag{24}$$


        3. Let the set of "antisymmetric" quaternion $2times 2$ matrices be
          $$so(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^t=-x right}~=~Phi^{-1}(so(4,mathbb{C}))~=~V({bf 1}_{2 times 2}otimes j) ,tag{25} $$
          where
          $$ V~:=~u(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^{dagger}=x right} $$
          $$~=~left{left. begin{pmatrix} r & q cr bar{q} & s end{pmatrix} in{rm Mat}_{2times 2}(mathbb{H}) right| r,sinmathbb{R}, ~qinmathbb{H} right}
          ~cong~mathbb{R}^{1,5}tag{26} $$

          is the real vector space of Hermitian quaternion $2times 2$ matrices.


        4. Endow $V$ with the indefinite quadratic form
          $$ ||x||^2 ~=~ {rm Pf}(Phi(x({bf 1}_{2 times 2}otimes j)))~=~ frac{1}{2}{rm Re~tr} (x^2)-frac{1}{2}{rm Re~tr} (x)^2~=~rs pm |q|^2 .tag{27} $$


        5. There is a group action $rho:Gtimes V to V$
          $$ rho(g)x~:=~gxg^{dagger}~=~-gx({bf 1}_{2 times 2}otimes j)g^t({bf 1}_{2 times 2}otimes j), qquad g~in ~G, qquad x~in~ V, tag{28}$$
          which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
          In other words, there is a Lie group homomorphism
          $rho: Grightarrow O(V)$, where
          $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{29}$$
          $Box$



        References:




        1. Paul Garrett, Sporadic isogenies to orthogonal groups, 2015.






        share|cite|improve this answer











        $endgroup$




        Proposition A:
        $$U(p,q;mathbb{H})~cong~Sp(p,q).tag{1}$$




        Sketched proof:




        1. The indefinite unitary group over the quaternions is
          $$U(p,q;mathbb{H})~:=~ left{
          xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{dagger}eta x =eta right. right},qquad n~=~p+q,$$

          $$ ~=~left{
          xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta} x ={bf 1}_{n times n} right. right},qquad x^{daggereta}~:=~eta x^{dagger}eta,$$

          $$ eta~:=~{rm diag}(underbrace{+1,ldots,+1}_p,underbrace{-1,dots, -1}_q),qquad eta^2~=~{bf 1}_{n times n} tag{2} . $$
          Let us mention for completeness that the corresponding Lie algebra
          $$u(p,q;mathbb{H})~:=~ left{
          xin{rm Mat}_{ntimes n}(mathbb{H}) left| x^{daggereta}=- x right. right} tag{3} $$

          of anti-Hermitian matrices has real dimension
          $$dim_{mathbb{R}}u(p,q;mathbb{H})~=~4frac{n(n-1)}{2}+3n~=~n(2n+1).tag{4} $$


        2. The indefinite unitary group over the complex numbers is
          $$U(2p,2q)~:=~ left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^{dagger}(etaotimes {bf 1}_{2 times 2} ) M =etaotimes {bf 1}_{2 times 2} right. right}. tag{5}$$


        3. The symplectic group over the complex numbers is
          $$Sp(2n;mathbb{C})~:=~ left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^tOmega M =Omega right. right}$$

          $$~cong~left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| M^t(etaotimesomega) M =(etaotimesomega) right. right}, $$

          $$ Omega ~:=~{bf 1}_{n times n}otimes omega~=~-Omega^t, qquad
          omega ~:=~mathrm{i}sigma_2~=~-omega^t , qquadOmega^2~=~-{bf 1}_{2n times 2n}.tag{6}$$

          The proof that we can use $etaotimesomega$ rather than $Omega$ as symplectic unit follows from index relabelling of rows (and the corresponding index relabelling of columns).


        4. The indefinite symplectic group is defined as
          $$Sp(p,q)~:=~U(2p,2q) cap Sp(2n;mathbb{C}), $$
          $$~=~left{ Min U(2p,2q) left| M^t(etaotimesomega) M =(etaotimesomega) right. right} $$
          $$~=~left{ Min U(2p,2q) left| overline{M}Omega = Omega M right. right}, qquad eta Omega~=~ Omegaeta.tag{7} $$


        5. The condition
          $$overline{M}Omega ~=~ Omega M tag{8} $$

          is the condition
          $$ overline{m}_{ij}omega ~=~omega m_{ij}, qquad
          i,j~in~{1,ldots,n},tag{9} $$

          that each of the $2times 2$ blocks $m_{ij}$ in
          $$M~=~begin{pmatrix} m_{11} &ldots & m_{1n} cr
          vdots &ddots & vdots cr
          m_{n1} &ldots & m_{nn}end{pmatrix}~in~{rm Mat}_{2ntimes 2n}(mathbb{C})tag{10}$$

          can be identified with a quaternion, cf. e.g. my Phys.SE answer here. In other words, there is an $mathbb{R}$-algebra isomorphism
          $$ Phi:~~{rm Mat}_{ntimes n}(mathbb{H})~~longrightarrow left{
          Min{rm Mat}_{2ntimes 2n}(mathbb{C}) left| overline{M} Omega = Omega M right. right}.tag{11} $$

          $Phi$ is actual a star algebra isomorphism
          $$ Phi(x^{dagger})~=~Phi(x)^{dagger}, qquad x~in~{rm Mat}_{ntimes n}(mathbb{H}).tag{12}$$


        6. Conclude the group isomorphism
          $$U(p,q;mathbb{H})~stackrel{Phi_|}{cong}~Sp(p,q).tag{13}$$
          $Box$




        Proposition B:




        1. $G:=U(2; mathbb{H})$ is (the double cover of) the special orthogonal group $SO(5).$


        2. $G:=U(1,1; mathbb{H})$ is (the double cover of) the restricted de Sitter group $SO^+(1,4).$





        Sketched proof:




        1. Since quaternions are non-commutative, care should be taken when defining
          trace (& determinant). The reduced trace is defined as
          $$ {rm Re~tr} (x)~=~frac{1}{2} {rm tr} (x+x^{dagger})~=~frac{1}{2} {rm tr} (Phi(x)), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}),tag{14} $$
          which is cyclic,
          e.g. because
          $$ {rm Re}(qq^{prime})~=~{rm Re}(q^{prime}q), qquad q,q^{prime}~in~mathbb{H}.tag{15} $$


        2. There is a bijective isometry from $mathbb{R}^5$ [or $mathbb{R}^{1,4}$] to the $mathbb{R}$-inner product space
          $$ V~=~ left{ xin {rm Mat}_{2times 2}(mathbb{H}) left| x^{daggereta}=x~~wedge~~ {rm Re~tr} (x)=0 right. right} $$
          $$~=~left{left. begin{pmatrix} r & q cr pmbar{q} & -r end{pmatrix}in {rm Mat}_{2times 2}(mathbb{H}) right| rinmathbb{R}~~wedge~~qinmathbb{H}right},tag{16}$$
          equipped with the (indefinite) quadratic form
          $$ || x||^2~:=~ frac{1}{2}{rm Re~tr} (x^2)~=~r^2 pm |q|^2 , tag{17}$$
          where $pm$ corresponds to the two cases in Proposition B.


        3. There is a group action $rho:Gtimes V to V$ given by conjugation
          $$ rho(g)x~:=~gxg^{-1}~=~gxg^{daggereta}, qquad g~in ~G, qquad x~in~ V, tag{18}$$
          which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
          In other words, there is a Lie group homomorphism
          $rho: Grightarrow O(V)$, where
          $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{19}$$
          $Box$




        Proposition C:
        $$G~:=~SL(2;mathbb{H})~:=~Phi^{-1}(SL(4;mathbb{C})) tag{20}$$
        is (the double cover of) the special orthogonal group $SO^+(1,5).$




        Sketched proof:




        1. Let
          $$so(4,mathbb{C})~:=~left{
          Ain{rm Mat}_{4times 4}(mathbb{C}) left| A^t = -A right. right}tag{21}$$

          denote the set of antisymmetric complex $4times 4$ matrices,
          endowed with the Pfaffian
          $${rm Pf}(A)~=~frac{1}{8}sum_{mu,nu,lambda,sigma=1}^4epsilon_{munulambdasigma}A^{munu} A^{lambdasigma}
          ~=~A^{12}A^{34} + A^{31}A^{24} + A^{23}A^{14}, $$

          $$ epsilon_{1234}~=~1.tag{22}$$


        2. If we define a "transposed" quaternion as
          $$ q^t~:=~q|_{q^2to-q^2}~=~-jbar{q}j, qquad q~in~mathbb{H}, tag{23}$$
          then
          $$ Phi(x)^t~=~Phi(x^t), qquad x~in~{rm Mat}_{2times 2}(mathbb{H}). tag{24}$$


        3. Let the set of "antisymmetric" quaternion $2times 2$ matrices be
          $$so(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^t=-x right}~=~Phi^{-1}(so(4,mathbb{C}))~=~V({bf 1}_{2 times 2}otimes j) ,tag{25} $$
          where
          $$ V~:=~u(2;mathbb{H})~:= left{ xin{rm Mat}_{2times 2}(mathbb{H}) mid x^{dagger}=x right} $$
          $$~=~left{left. begin{pmatrix} r & q cr bar{q} & s end{pmatrix} in{rm Mat}_{2times 2}(mathbb{H}) right| r,sinmathbb{R}, ~qinmathbb{H} right}
          ~cong~mathbb{R}^{1,5}tag{26} $$

          is the real vector space of Hermitian quaternion $2times 2$ matrices.


        4. Endow $V$ with the indefinite quadratic form
          $$ ||x||^2 ~=~ {rm Pf}(Phi(x({bf 1}_{2 times 2}otimes j)))~=~ frac{1}{2}{rm Re~tr} (x^2)-frac{1}{2}{rm Re~tr} (x)^2~=~rs pm |q|^2 .tag{27} $$


        5. There is a group action $rho:Gtimes V to V$
          $$ rho(g)x~:=~gxg^{dagger}~=~-gx({bf 1}_{2 times 2}otimes j)g^t({bf 1}_{2 times 2}otimes j), qquad g~in ~G, qquad x~in~ V, tag{28}$$
          which is length preserving, i.e. $g$ is a (pseudo)orthogonal transformation.
          In other words, there is a Lie group homomorphism
          $rho: Grightarrow O(V)$, where
          $$rho(pm {bf 1}_{2 times 2})~=~{bf 1}_V.tag{29}$$
          $Box$



        References:




        1. Paul Garrett, Sporadic isogenies to orthogonal groups, 2015.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 8 at 16:20

























        answered Nov 19 '16 at 17:45









        QmechanicQmechanic

        4,97711855




        4,97711855






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1105200%2fspin-group-spin4-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            An IMO inspired problem

            Management

            Has there ever been an instance of an active nuclear power plant within or near a war zone?