Closed form for $sumlimits_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}$, with...












0














Consider the sum




$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$




My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?










share|cite|improve this question
























  • These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
    – Jack D'Aurizio
    2 days ago












  • I'm not sure, which theorem exactly do you have in mind?
    – Isak
    yesterday
















0














Consider the sum




$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$




My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?










share|cite|improve this question
























  • These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
    – Jack D'Aurizio
    2 days ago












  • I'm not sure, which theorem exactly do you have in mind?
    – Isak
    yesterday














0












0








0


0





Consider the sum




$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$




My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?










share|cite|improve this question















Consider the sum




$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$




My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?







sequences-and-series closed-form riemann-zeta euler-sums






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









mrtaurho

3,99521133




3,99521133










asked 2 days ago









Isak

215




215












  • These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
    – Jack D'Aurizio
    2 days ago












  • I'm not sure, which theorem exactly do you have in mind?
    – Isak
    yesterday


















  • These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
    – Jack D'Aurizio
    2 days ago












  • I'm not sure, which theorem exactly do you have in mind?
    – Isak
    yesterday
















These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago






These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago














I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday




I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday










1 Answer
1






active

oldest

votes


















1














Changing your notation a bit
and playing around.



If
$O_{n}(s)
=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
=sum_{k=1}^n frac1{(2k-1)^s}
$
,
$O(s)
=O_{infty}(s)
$
,
and
$s(p, q)
=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
$

then



$s(p, q)+s(q, p)
=O(p)O(q)+O(p+q)
$
.



Proof.



$begin{array}\
s(p, q)
&=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
&=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
&=O(p)O(q)-s(q, p)+O(p+q)
\
end{array}
$



Some additional
definitions and stuff
which might be useful.



$Z_{n}(s)
=sum_{k=1}^n frac1{k^s}
$



$E_{n}(s)
=sum_{k=1}^n frac1{(2k)^s}
=frac1{2^s}sum_{k=1}^n frac1{k^s}
=frac1{2^s}Z_{n}(s)
$



$O_{n}(s)+E_{n}(s)
=sum_{k=1}^{2n} frac1{k^s}
=Z_{2n}(s)
$

so
$O_{n}(s)
=Z_{2n}(s)-E_{n}(s)
=Z_{2n}(s)-frac1{2^s}Z_{n}(s)
$



$O(s)
=O_{infty}(s)
$
,
$E(s)
=E_{infty}(s)
$
,
$Z(s)
=zeta(s)
=Z_{infty}(s)
$
.



$O(s)
=Z(s)-E(s)
=Z(s)-frac1{2^s}Z(s)
=(1-2^{-s})Z(s)
$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060925%2fclosed-form-for-sum-limits-n-1-infty-fraco-np2n-1q-with%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Changing your notation a bit
    and playing around.



    If
    $O_{n}(s)
    =1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
    =sum_{k=1}^n frac1{(2k-1)^s}
    $
    ,
    $O(s)
    =O_{infty}(s)
    $
    ,
    and
    $s(p, q)
    =sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
    $

    then



    $s(p, q)+s(q, p)
    =O(p)O(q)+O(p+q)
    $
    .



    Proof.



    $begin{array}\
    s(p, q)
    &=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
    &=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
    &=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
    &=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
    &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
    &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
    &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
    &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
    &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
    &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
    &=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
    &=O(p)O(q)-s(q, p)+O(p+q)
    \
    end{array}
    $



    Some additional
    definitions and stuff
    which might be useful.



    $Z_{n}(s)
    =sum_{k=1}^n frac1{k^s}
    $



    $E_{n}(s)
    =sum_{k=1}^n frac1{(2k)^s}
    =frac1{2^s}sum_{k=1}^n frac1{k^s}
    =frac1{2^s}Z_{n}(s)
    $



    $O_{n}(s)+E_{n}(s)
    =sum_{k=1}^{2n} frac1{k^s}
    =Z_{2n}(s)
    $

    so
    $O_{n}(s)
    =Z_{2n}(s)-E_{n}(s)
    =Z_{2n}(s)-frac1{2^s}Z_{n}(s)
    $



    $O(s)
    =O_{infty}(s)
    $
    ,
    $E(s)
    =E_{infty}(s)
    $
    ,
    $Z(s)
    =zeta(s)
    =Z_{infty}(s)
    $
    .



    $O(s)
    =Z(s)-E(s)
    =Z(s)-frac1{2^s}Z(s)
    =(1-2^{-s})Z(s)
    $






    share|cite|improve this answer


























      1














      Changing your notation a bit
      and playing around.



      If
      $O_{n}(s)
      =1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
      =sum_{k=1}^n frac1{(2k-1)^s}
      $
      ,
      $O(s)
      =O_{infty}(s)
      $
      ,
      and
      $s(p, q)
      =sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
      $

      then



      $s(p, q)+s(q, p)
      =O(p)O(q)+O(p+q)
      $
      .



      Proof.



      $begin{array}\
      s(p, q)
      &=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
      &=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
      &=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
      &=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
      &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
      &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
      &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
      &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
      &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
      &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
      &=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
      &=O(p)O(q)-s(q, p)+O(p+q)
      \
      end{array}
      $



      Some additional
      definitions and stuff
      which might be useful.



      $Z_{n}(s)
      =sum_{k=1}^n frac1{k^s}
      $



      $E_{n}(s)
      =sum_{k=1}^n frac1{(2k)^s}
      =frac1{2^s}sum_{k=1}^n frac1{k^s}
      =frac1{2^s}Z_{n}(s)
      $



      $O_{n}(s)+E_{n}(s)
      =sum_{k=1}^{2n} frac1{k^s}
      =Z_{2n}(s)
      $

      so
      $O_{n}(s)
      =Z_{2n}(s)-E_{n}(s)
      =Z_{2n}(s)-frac1{2^s}Z_{n}(s)
      $



      $O(s)
      =O_{infty}(s)
      $
      ,
      $E(s)
      =E_{infty}(s)
      $
      ,
      $Z(s)
      =zeta(s)
      =Z_{infty}(s)
      $
      .



      $O(s)
      =Z(s)-E(s)
      =Z(s)-frac1{2^s}Z(s)
      =(1-2^{-s})Z(s)
      $






      share|cite|improve this answer
























        1












        1








        1






        Changing your notation a bit
        and playing around.



        If
        $O_{n}(s)
        =1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
        =sum_{k=1}^n frac1{(2k-1)^s}
        $
        ,
        $O(s)
        =O_{infty}(s)
        $
        ,
        and
        $s(p, q)
        =sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
        $

        then



        $s(p, q)+s(q, p)
        =O(p)O(q)+O(p+q)
        $
        .



        Proof.



        $begin{array}\
        s(p, q)
        &=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
        &=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
        &=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
        &=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
        &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
        &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
        &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
        &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
        &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
        &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
        &=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
        &=O(p)O(q)-s(q, p)+O(p+q)
        \
        end{array}
        $



        Some additional
        definitions and stuff
        which might be useful.



        $Z_{n}(s)
        =sum_{k=1}^n frac1{k^s}
        $



        $E_{n}(s)
        =sum_{k=1}^n frac1{(2k)^s}
        =frac1{2^s}sum_{k=1}^n frac1{k^s}
        =frac1{2^s}Z_{n}(s)
        $



        $O_{n}(s)+E_{n}(s)
        =sum_{k=1}^{2n} frac1{k^s}
        =Z_{2n}(s)
        $

        so
        $O_{n}(s)
        =Z_{2n}(s)-E_{n}(s)
        =Z_{2n}(s)-frac1{2^s}Z_{n}(s)
        $



        $O(s)
        =O_{infty}(s)
        $
        ,
        $E(s)
        =E_{infty}(s)
        $
        ,
        $Z(s)
        =zeta(s)
        =Z_{infty}(s)
        $
        .



        $O(s)
        =Z(s)-E(s)
        =Z(s)-frac1{2^s}Z(s)
        =(1-2^{-s})Z(s)
        $






        share|cite|improve this answer












        Changing your notation a bit
        and playing around.



        If
        $O_{n}(s)
        =1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
        =sum_{k=1}^n frac1{(2k-1)^s}
        $
        ,
        $O(s)
        =O_{infty}(s)
        $
        ,
        and
        $s(p, q)
        =sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
        $

        then



        $s(p, q)+s(q, p)
        =O(p)O(q)+O(p+q)
        $
        .



        Proof.



        $begin{array}\
        s(p, q)
        &=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
        &=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
        &=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
        &=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
        &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
        &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
        &=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
        &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
        &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
        &=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
        &=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
        &=O(p)O(q)-s(q, p)+O(p+q)
        \
        end{array}
        $



        Some additional
        definitions and stuff
        which might be useful.



        $Z_{n}(s)
        =sum_{k=1}^n frac1{k^s}
        $



        $E_{n}(s)
        =sum_{k=1}^n frac1{(2k)^s}
        =frac1{2^s}sum_{k=1}^n frac1{k^s}
        =frac1{2^s}Z_{n}(s)
        $



        $O_{n}(s)+E_{n}(s)
        =sum_{k=1}^{2n} frac1{k^s}
        =Z_{2n}(s)
        $

        so
        $O_{n}(s)
        =Z_{2n}(s)-E_{n}(s)
        =Z_{2n}(s)-frac1{2^s}Z_{n}(s)
        $



        $O(s)
        =O_{infty}(s)
        $
        ,
        $E(s)
        =E_{infty}(s)
        $
        ,
        $Z(s)
        =zeta(s)
        =Z_{infty}(s)
        $
        .



        $O(s)
        =Z(s)-E(s)
        =Z(s)-frac1{2^s}Z(s)
        =(1-2^{-s})Z(s)
        $







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 days ago









        marty cohen

        72.7k549128




        72.7k549128






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060925%2fclosed-form-for-sum-limits-n-1-infty-fraco-np2n-1q-with%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8