Closed form for $sumlimits_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}$, with...
Consider the sum
$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$
My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?
sequences-and-series closed-form riemann-zeta euler-sums
add a comment |
Consider the sum
$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$
My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?
sequences-and-series closed-form riemann-zeta euler-sums
These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago
I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday
add a comment |
Consider the sum
$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$
My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?
sequences-and-series closed-form riemann-zeta euler-sums
Consider the sum
$$sum_{n=1}^{infty}frac{O_{n}^{(p)}}{(2n-1)^{q}}text{, with }O_{n}^{(s)}=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}$$
My question is: if there exists some general theorems that allow to represent this sums in terms of the Riemann Zeta function, like Borwein-Borwein-Girgensohn theorem for Euler sums?
sequences-and-series closed-form riemann-zeta euler-sums
sequences-and-series closed-form riemann-zeta euler-sums
edited 2 days ago
mrtaurho
4,00521133
4,00521133
asked 2 days ago
Isak
215
215
These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago
I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday
add a comment |
These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago
I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday
These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago
These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago
I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday
I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday
add a comment |
1 Answer
1
active
oldest
votes
Changing your notation a bit
and playing around.
If
$O_{n}(s)
=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
=sum_{k=1}^n frac1{(2k-1)^s}
$,
$O(s)
=O_{infty}(s)
$,
and
$s(p, q)
=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
$
then
$s(p, q)+s(q, p)
=O(p)O(q)+O(p+q)
$.
Proof.
$begin{array}\
s(p, q)
&=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
&=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
&=O(p)O(q)-s(q, p)+O(p+q)
\
end{array}
$
Some additional
definitions and stuff
which might be useful.
$Z_{n}(s)
=sum_{k=1}^n frac1{k^s}
$
$E_{n}(s)
=sum_{k=1}^n frac1{(2k)^s}
=frac1{2^s}sum_{k=1}^n frac1{k^s}
=frac1{2^s}Z_{n}(s)
$
$O_{n}(s)+E_{n}(s)
=sum_{k=1}^{2n} frac1{k^s}
=Z_{2n}(s)
$
so
$O_{n}(s)
=Z_{2n}(s)-E_{n}(s)
=Z_{2n}(s)-frac1{2^s}Z_{n}(s)
$
$O(s)
=O_{infty}(s)
$,
$E(s)
=E_{infty}(s)
$,
$Z(s)
=zeta(s)
=Z_{infty}(s)
$.
$O(s)
=Z(s)-E(s)
=Z(s)-frac1{2^s}Z(s)
=(1-2^{-s})Z(s)
$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060925%2fclosed-form-for-sum-limits-n-1-infty-fraco-np2n-1q-with%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Changing your notation a bit
and playing around.
If
$O_{n}(s)
=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
=sum_{k=1}^n frac1{(2k-1)^s}
$,
$O(s)
=O_{infty}(s)
$,
and
$s(p, q)
=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
$
then
$s(p, q)+s(q, p)
=O(p)O(q)+O(p+q)
$.
Proof.
$begin{array}\
s(p, q)
&=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
&=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
&=O(p)O(q)-s(q, p)+O(p+q)
\
end{array}
$
Some additional
definitions and stuff
which might be useful.
$Z_{n}(s)
=sum_{k=1}^n frac1{k^s}
$
$E_{n}(s)
=sum_{k=1}^n frac1{(2k)^s}
=frac1{2^s}sum_{k=1}^n frac1{k^s}
=frac1{2^s}Z_{n}(s)
$
$O_{n}(s)+E_{n}(s)
=sum_{k=1}^{2n} frac1{k^s}
=Z_{2n}(s)
$
so
$O_{n}(s)
=Z_{2n}(s)-E_{n}(s)
=Z_{2n}(s)-frac1{2^s}Z_{n}(s)
$
$O(s)
=O_{infty}(s)
$,
$E(s)
=E_{infty}(s)
$,
$Z(s)
=zeta(s)
=Z_{infty}(s)
$.
$O(s)
=Z(s)-E(s)
=Z(s)-frac1{2^s}Z(s)
=(1-2^{-s})Z(s)
$
add a comment |
Changing your notation a bit
and playing around.
If
$O_{n}(s)
=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
=sum_{k=1}^n frac1{(2k-1)^s}
$,
$O(s)
=O_{infty}(s)
$,
and
$s(p, q)
=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
$
then
$s(p, q)+s(q, p)
=O(p)O(q)+O(p+q)
$.
Proof.
$begin{array}\
s(p, q)
&=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
&=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
&=O(p)O(q)-s(q, p)+O(p+q)
\
end{array}
$
Some additional
definitions and stuff
which might be useful.
$Z_{n}(s)
=sum_{k=1}^n frac1{k^s}
$
$E_{n}(s)
=sum_{k=1}^n frac1{(2k)^s}
=frac1{2^s}sum_{k=1}^n frac1{k^s}
=frac1{2^s}Z_{n}(s)
$
$O_{n}(s)+E_{n}(s)
=sum_{k=1}^{2n} frac1{k^s}
=Z_{2n}(s)
$
so
$O_{n}(s)
=Z_{2n}(s)-E_{n}(s)
=Z_{2n}(s)-frac1{2^s}Z_{n}(s)
$
$O(s)
=O_{infty}(s)
$,
$E(s)
=E_{infty}(s)
$,
$Z(s)
=zeta(s)
=Z_{infty}(s)
$.
$O(s)
=Z(s)-E(s)
=Z(s)-frac1{2^s}Z(s)
=(1-2^{-s})Z(s)
$
add a comment |
Changing your notation a bit
and playing around.
If
$O_{n}(s)
=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
=sum_{k=1}^n frac1{(2k-1)^s}
$,
$O(s)
=O_{infty}(s)
$,
and
$s(p, q)
=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
$
then
$s(p, q)+s(q, p)
=O(p)O(q)+O(p+q)
$.
Proof.
$begin{array}\
s(p, q)
&=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
&=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
&=O(p)O(q)-s(q, p)+O(p+q)
\
end{array}
$
Some additional
definitions and stuff
which might be useful.
$Z_{n}(s)
=sum_{k=1}^n frac1{k^s}
$
$E_{n}(s)
=sum_{k=1}^n frac1{(2k)^s}
=frac1{2^s}sum_{k=1}^n frac1{k^s}
=frac1{2^s}Z_{n}(s)
$
$O_{n}(s)+E_{n}(s)
=sum_{k=1}^{2n} frac1{k^s}
=Z_{2n}(s)
$
so
$O_{n}(s)
=Z_{2n}(s)-E_{n}(s)
=Z_{2n}(s)-frac1{2^s}Z_{n}(s)
$
$O(s)
=O_{infty}(s)
$,
$E(s)
=E_{infty}(s)
$,
$Z(s)
=zeta(s)
=Z_{infty}(s)
$.
$O(s)
=Z(s)-E(s)
=Z(s)-frac1{2^s}Z(s)
=(1-2^{-s})Z(s)
$
Changing your notation a bit
and playing around.
If
$O_{n}(s)
=1+frac{1}{3^{s}}+dots+frac{1}{(2n-1)^{s}}
=sum_{k=1}^n frac1{(2k-1)^s}
$,
$O(s)
=O_{infty}(s)
$,
and
$s(p, q)
=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}
$
then
$s(p, q)+s(q, p)
=O(p)O(q)+O(p+q)
$.
Proof.
$begin{array}\
s(p, q)
&=sum_{n=1}^{infty}dfrac{O_{n}(p)}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}dfrac{sum_{k=1}^n frac1{(2k-1)^p}}{(2n-1)^{q}}\
&=sum_{n=1}^{infty}sum_{k=1}^n dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}sum_{n=k}^{infty} dfrac1{(2k-1)^p}dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}sum_{n=k}^{infty} dfrac{1}{(2n-1)^{q}}\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(sum_{n=1}^{infty} dfrac{1}{(2n-1)^{q}}-sum_{n=1}^{k-1} dfrac{1}{(2n-1)^{q}}right)\
&=sum_{k=1}^{infty}dfrac1{(2k-1)^p}left(O(q)-O_{k-1}(q)right)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k-1}(q)\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}(O_{k}(q)-frac1{(2k-1)^q})\
&=O(p)O(q)-sum_{k=1}^{infty}dfrac1{(2k-1)^p}O_{k}(q)+sum_{k=1}^{infty}dfrac1{(2k-1)^p}dfrac1{(2k-1)^q}\
&=O(p)O(q)-s(q, p)+sum_{k=1}^{infty}dfrac1{(2k-1)^{p+q}}\
&=O(p)O(q)-s(q, p)+O(p+q)
\
end{array}
$
Some additional
definitions and stuff
which might be useful.
$Z_{n}(s)
=sum_{k=1}^n frac1{k^s}
$
$E_{n}(s)
=sum_{k=1}^n frac1{(2k)^s}
=frac1{2^s}sum_{k=1}^n frac1{k^s}
=frac1{2^s}Z_{n}(s)
$
$O_{n}(s)+E_{n}(s)
=sum_{k=1}^{2n} frac1{k^s}
=Z_{2n}(s)
$
so
$O_{n}(s)
=Z_{2n}(s)-E_{n}(s)
=Z_{2n}(s)-frac1{2^s}Z_{n}(s)
$
$O(s)
=O_{infty}(s)
$,
$E(s)
=E_{infty}(s)
$,
$Z(s)
=zeta(s)
=Z_{infty}(s)
$.
$O(s)
=Z(s)-E(s)
=Z(s)-frac1{2^s}Z(s)
=(1-2^{-s})Z(s)
$
answered 2 days ago
marty cohen
72.7k549128
72.7k549128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060925%2fclosed-form-for-sum-limits-n-1-infty-fraco-np2n-1q-with%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
These Euler sums are well-known to be solvable (in terms of $zeta$) for $p+qleq 5$ and in other cases (like $p=q$), see The Bible.
– Jack D'Aurizio
2 days ago
I'm not sure, which theorem exactly do you have in mind?
– Isak
yesterday